• Title/Summary/Keyword: heating temperature and time

Search Result 1,377, Processing Time 0.035 seconds

A Study on the Practicality of Surface Adibatic Curing Method for Cold Weathering Construction (동절기 공사를 위한 표면단열 양생방법의 실용화에 관한 연구)

  • Lee, Do-Bum;Choi, Il-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.491-494
    • /
    • 2005
  • This study was carried out to examine application of surface adiabatic curing method in slightly cold weathering period. So, early aged freezing damage and compressive strength of concrete were examined through temperature analysis of construction concrete. Temperature analysis was carried out according to the average temperature, concrete placement completion time and surface adiabatic curing method. Analysis results show that additional curing plans are demanded in concrete construction below 0$^{circ}C$, surface adiabatic curing method is could apply in the average temperature more than -2$^{circ}C$ and curing method as heating are needed under -2$^{circ}C$.

  • PDF

Thermal Characteristics of Fire-Protection Foams Exposed to Radiant Heating (복사열에 노출된 소방용 폼 약제의 열적 특성 연구)

  • Kim, H.S.;Hwang, I.J.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1570-1575
    • /
    • 2004
  • In order to evaluate the performance of fire-fighting agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams are experimentally investigated. The current research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test for fire-protection foams subjected to fire radiation is developed. This test involves foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of $15^{\circ}C{\sim}20^{\circ}C$. At this point, each trace generally rises to a temperature of approximately $90^{\circ}C$. The temperature gradient in the foam as time passes increases with increased foam expansion ratio. In addition, it is determined that the temperature gradient along the foam for depth decreases with increased foam expansion ratio.

  • PDF

Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.529-542
    • /
    • 2019
  • Nowadays, drying methods for municipal solid waste quality improvement have been adopted in the developed and developing countries to valorize wastes for a renewable energy source, reduce dependency on fossil fuel and keep safer disposal at landfills. Among them, biodrying, biostabilization, thermal drying and solar drying are the most common. Drying of municipal solid waste could offer several environmental and economic benefits. Therefore, this review highlighted the drying methods for municipal solid waste quality improvement around the world and compared them based on the reduction of moisture, weight and volume of municipal solid wastes against drying temperature and time by using statistical analysis. It was observed that the drying temperature of different drying methods accounted for 115 ± 40℃ for thermal drying, 59 ± 37℃ for solar drying, 55 ± 15℃ for biodrying and 58 ± 11℃ for biostabilization. Among the drying methods, thermal drying provided the shortest drying time. The moisture reduction, weight reduction, volume reduction and heating value increase of municipal solid waste could vary with drying temperature and time. Finally, the benefits and drawbacks of different drying methods were specified, and recommendations were made for the future efficient drying.

Effects of Heating Temperature and Time, Salt and pH on the Texture and Color Characteristics of Whole Egg Gel (계란찜의 텍스쳐와 색에 미치는 가열온도와 시간, pH 및 소금의 영향)

  • 김경미;김종군;김주숙;김우정
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.163-170
    • /
    • 2004
  • Effect of several factors for Preparation of whole egg gel (WEG) on texture and color of WEG were investigated in this study. The factors studied were amount of water addition, heating temperature and time, pH and NaCl. The whole egg gel was prepared by mixing of whole egg and steaming at 100$^{\circ}C$ for 7 min followed by cooling at 22$^{\circ}C$ for 90 min. The results showed that the increase in water addition decreased significantly with viscosity values of whole egg solution (WES) and the addition of more than 50% water resulted in a significant decrease in the stress at failure (SF) and the hardness of WEG. The color a and b values of WES decreased and the value of WEG also decreased significantly in negative range. The increase in heating temperature decreased the coagulation time and increased in SF while SF decreased. Addition of NaCl up to 1.3% resulted a significant increase in SF and hardness and a little changes in color of WEG. As the pH of WES changed from 4.0 to 10.0, the viscosity of WES was minimal and SF and hardness were maximal at pH 6.0. The L and b values of WEG were significantly reduced at higher pH values of 8.0.

A Study on the Cold Weather Concrete using High Early Strength Concrete (조강시멘트를 이용한 한중콘크리트의 특성평가 연구)

  • 임채용;엄태선;유재상;이종열;이순기;이동호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.261-264
    • /
    • 2003
  • Cold weather can lead to many problems in mixing, placing, setting time, and curing of concrete that can have harmful effects on its properties and service life. Korean Concrete Institute (KCI) defines cold weather as a period when the average daily air temperature is less $4^{\circ}C$ and recommends to cast concrete with special care such as shielding, heating and so on. The use of high early strength cements may improve the rate of hardening characteristics of concrete in cold weather by making it possible to achieve faster setting time and evolving more hydration heat than ordinary Portland cement. Higher early strength can be achieved using Type III cement especially during the first 7 days. The strength increase property of Type III cement at low temperature was studied. As a conclusion the heat or heat insulation curing period can be reduced to 50~75%. So, it can be used for cold weather concreting to reduce construction cost and extend the construction season.

  • PDF

Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building (학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation (착상을 고려한 극저온 질소-대기 열교환기의 해석)

  • 최권일;장호명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

A Study of Thermal Comfort by Winter Temperature Humidity Change (겨울철 온도 및 습도변화에 따른 온열쾌적감에 관한 연구)

  • Kim, Se-Hwan;Lee, Sung;Kim, Dong-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.803-809
    • /
    • 2007
  • To those who spend most time within a room, comfortable indoor environment is a very critical element to job performance and health. The comfort technology, which is for enhancing comfort in human living, relates with various factors to ensure human activities efficient, comfortable, safe and satisfactory. Experiments were performed in environmental chamber. Experimental conditions were combinations from three temperatures of 18, 22 and 26C, and two relative humidity levels of 45 and 60%. Air-flow was controlled to 0.1m/s through the experiment. Four male and four female university students participated in the experiments. They had normal blood pressure and their body temperature was under $37^{\circ}C$. From the experiments for evaluating thermal sensation to the air-heating conditions, relationships among TSV, CSV, $SET^*$, PMV were analyzed. Results can be summarized as followings; Thermal neutrality $SET^*$ of man and female was $24.8^{\circ}C$. In air-heating condition, $SET^*$ values for thermal comfort zone were $23.0{\sim}26.5^{\circ}C$. These values were higher than the values from ASHRAE.

Time Resolved Effect of Heat Dispersion on Magnetic Stability in Ferromagnetic Ising Thin-Films: Monte Carlo Simulation

  • Laosiritaworn, W.;Laosiritaworn, Y.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.233-241
    • /
    • 2012
  • In this work, Monte Carlo simulation was used to investigate the magnetization properties of thin ferromagnetic films under a perturbation from a supplied heat pulse on one surface of the films. The finite difference method was used to extract the local temperature of each layer of the films as a function of time for various heat source power and heating period. Then, with the variation of the films temperature, Metropolis method was used to update the magnetic moment in magnetic grain, under the Ising framework and using the FePt parameters. With the extracted magnetization profiles, the relationship between magnetization relaxation in accordance with relevant heat parameters and films thickness was reported and discussed, with a purpose to form a database for future use.

Cure Characteristics of Metal Particle Filled DGEBA/MDA/SN/ zeolite Composite System for EMI Shielding

  • Cho, Young-Shin;Lee, Hong-Ki;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.548-551
    • /
    • 1999
  • The cure characteristics of metal particle filled DGEBA/MDA/SN/ zeolite epoxy resin composite system for EMI shielding were investigated by dynamic DSC run method and FT-lR spectroscopy. As the heating rate increased, the peak temperature on dynamic DSC curve increased because of the rapid cure reaction. From the straight line of the Kissinger plot, the curing reaction activation energy and pre-exponential factor could be obtained. As the post-curing time at 15$0^{\circ}C$ increased, the glass increased the glass transition temperature or the thermal stability increased. When the post curing time is too long, the system filled with metallic Al particle can be thermally oxidized by the catalytic reaction of metal filler and the thermal stability of the composite for the EMI shielding application may be decreased.

  • PDF