• Title/Summary/Keyword: heating temperature and time

Search Result 1,375, Processing Time 0.026 seconds

Study on 222Rn reduction rate in boiling groundwater (가열에 의한 지하수 중 222Rn 제거율 고찰)

  • Kim, MoonSu;Kim, Hyun-Koo;Park, Sun-Wha;Kim, Hyoung-Seop;Ju, Byoung-Kyu;Kim, Dong-Su;Cho, Sung-Jin;Yang, Jae-Ha;Kwon, Oh-Sang;Kim, Tae-Seung
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.353-360
    • /
    • 2015
  • Boiling is an efficient removal method to reduce radon in groundwater when ventilating indoor air. 13 groundwater samples with various radon concentrations were used to evaluate the reduction rate of radon with heating temperature and time. The groundwater samples were obtained by Bladder pump and on-situ measurements such as dissolved oxygen (DO) and hydrogen concentration (pH) and so on were carried out by a flow cell system isolated from the ambient atmosphere environment. All samples for measuring radon in groundwater were analyzed by liquid scintillation counter (LSC). The experiment result showed that increasing groundwater temperature enhanced radon removal rate but the initial radon concentration with high level lowered the removal rate. This means that radon reduction in groundwater by heating needs more heating energy and longer heating time with radon concentrations. Radon removal rate in groundwater, therefore, mainly depends on the initial radon concentration, heating temperature, and heating time.

A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory (KNU 식물공장의 냉난방 에너지 부하 해석에 관한 연구)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1419-1426
    • /
    • 2012
  • The heating and cooling energy load of the KNU plant factory was analyzed using the DesignBuilder. Indoor temperature set-point, LED supplemental lighting schedule, LED heat gain, and type of double skin window were selected as simulation parameters. For the cases without LED supplemental lighting, the proper growth temperature of lettuce $20^{\circ}C$ was selected as indoor temperature set-point together with $15^{\circ}C$ and $25^{\circ}C$. The annual heating and cooling loads which are required to maintain a constant indoor temperature were calculated for all the given temperatures. The cooling load was highest for $15^{\circ}C$ and heating load was highest for $25^{\circ}C$. For the cases with LED supplemental lighting, the heating load was decreased and the cooling load was 6 times higher than the case without LED. In addition, night time lighting schedule gave better result as compared to day time lighting schedule. To investigate the effect of window type on annual energy load, 5 different double skin window types were selected. As the U-value of double skin window decreases, the heating load decreases and the cooling load increases. To optimize the total energy consumption in the plant factory, it is required to set a proper indoor temperature for the selected plantation crop, to select a suitable window type depending on LED heat gain, and to apply passive and active energy saving technology.

Optimal Conditions for the Wet Funnel Extraction of Enchytraeidae from Peat Soils of Moorlands in England (영국 고원지대(Moorland)의 이탄 토양에서 애지렁이 추출을 위한 수분깔때기의 최적조건)

  • ;H.I.J.Black;P.Ineson
    • The Korean Journal of Soil Zoology
    • /
    • v.5 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • The effect of combinations of temperature, water column height and extraction time onthe efficiency of wet funnel extraction methods for enumerating Enchytraeids in a blanket bog peat soil from Moor House, Cumbria, England were investigated. The optimal conditions for extracting enchytraeids from this study were found to be a water surface temperature of 35$^{\circ}C$, with an extraction time of 6 hours, regardless of initial water temperature and water level in the extraction funnel. The original O'Connor method (40-45$^{\circ}C$ for 3 hours extraction and gradually increasing heating) yielding a high variation in the extraction efficiency, largely due to the comparatively higher temperature and shorter extraction time than this method. Attempts to extract without heat over longer periods showed very low extraction efficiencies for this highly organic blanket bog soil when compared with any of the heating wet funnel methods.

  • PDF

Simple modeling to explore temperatures, heated temperature, and Kappa values of a current sheet observation

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Shen, Chengcai;Kahler, Stephen;Moon, Yong-Jae;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2021
  • We explore the range of possibilities of temperatures, heated temperature, and Kappa values of a current sheet observation on 2017 September 10. First, we construct a grid model with rapid heating (Theat) and various Kappa (κ) values. We assume a simple density model and use adiabatic cooling to set the temperature during expansion. Next, we calculate the ion fractions using a time-dependent ionization model with adiabatic cooling and various Kappa values. The calculated ion fractions are used to simulate the DNs of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. Then, we explore the possible range of the temperatures and Kappa values, comparing the simulated images with the observations. Finally, we discuss the range of the heated temperature and Kappa values and whether the result of this study suggests continuous heating of the current sheet plasma during the expansion.

  • PDF

Effect of Gamma Irradiation on the Softening of Dried Fernbrake at Different Moist-Heating Conditions (습열 조리 조건에 따른 방사선 조사 건고사리의 연화도)

  • Seung, Tae-Hwa;Lee, Ju-Woon;Byun, Myung-Woo;Kim, Mee-Ree
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.104-108
    • /
    • 2006
  • Effect of gamma irradiation on the softening of dried fernbrake at different moist-heating conditions was investigated. Dried fernbrake packaged in controlled atmosphere $(CO_2\;25\%,\;N_2\;75\%)$ was irradiated up to 7 kGy with $\gamma-ray$. Hardness of dried fernbrake was significantly decreased at the irradiation dose of above 5 kGy. Hardness of cooked fernbrake was significantly decreased with increasing irradiation dose level as well as heating temperature and time. $DT_{50}$ value (The heating time required to reach the $50\%$ reduction of hardness) for irradiated fernbrake was shortened according to dose level as well as heating temperature and heating time: $DT_{50}$ value of control: 23 min, 5 or 7 kGy: $2.2\~5.0$ min at $60^{\circ}C$. Also, the activation energy for softening of irradiated fernbrake ($1.85\~1.88$ kcal/mole for $5\~7kGy$) decreased compared to control (4.30 kcal/mole). Moisture content, swelling and rehydration rate of gamma irradiated fernbrake during moist heating increased according to the irradiation doses. Sensory results showed that scores of off-flavor and odor in irradiated fernbrake upto 7 kGy were not significantly different from control. Based on these results, gamma irradiation was effective for the reduction of cooking time and the activation energy for softening of dried fernbrake with increasing dose levels.

"A survey of Elementary School Children,s Concept of Temperature" (국민학교 아동의 온도개념 형성에 관한 조사)

  • Kim, Hyun-Jae;Kim, Han-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.10 no.1
    • /
    • pp.95-118
    • /
    • 1990
  • This students ideas in science are diverse and unique It is realized that children's preconceptions and misconceptions established before lessoning hgve a crucial in fluence on the following education. so it is meaningful to analyse the children's concept of temperature for the better teaching strategy in this study. This survey of the Elementary school children's concept is designed for the subtopics of temperature as the relation between heat and temperature, He relation between volume(size) and temperature, the temperature of change of state on water, the temperature of substances in the condition of thermal equilibrium. Using Clinical method, this research was executed to 306 children at elementary school. The network method or the analyse of questionnaires were used to analyse the children's response. Findings of this survey are as follow. Students are already familiar with such concept as this increase of temperature by geating, but they think every substance is not the case. Many students appears to believe that the temperature of an object(substance) is related to its size(vloume) Qualitative tasks are difficult than qualitative ones. This trend appear highly in the low grade students. Don't know the temperature of change of state on water and it's stability They think that the temperature is determined by the heating time(period) and the temperature of heating source. Students think, in general that temperature of substance in the condition of thermal equilibrium is different.

  • PDF

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF

The Study on the Gas Temperature Set by Calculating the Sensitivity of Slab Temperature in Reheating Furnace (소재온도 감도계산을 통한 가열로내 분위기온도 설정방안 연구)

  • Gang, Deok-Hong;Kim, Gi-Hong;Lee, Yong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1030-1036
    • /
    • 2001
  • A new mathematical model to determine the optimal gas temperatures in reheating furnace was proposed for the good quality of products. This model employs sensitivity method to calculate the optimal gas temperatures in each zone for heating the slab up to its discharging target temperature and for heating it uniformly. This method was validated by showing that the calculated discharging temperature of the slab was in a good agreement with its prescribed discharging target one through an off-line simulation.

Aerodynamic Heating Analysis and Flight Test of KSR-III Rocket (KSR-III 공력가열 해석 및 비행시험)

  • Kim, Seong-Lyong;Lee, Jun-Ho;Kim, In-Sun;Cho, Kwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.54-63
    • /
    • 2004
  • The inner surface temperatures of the KSR-III Sounding Rocket launched at 29th November 2002 were measured in the flight test, and the aerodynamic heating rate and outer surface temperature were calculated. The used program is the MINIVER code, which calculate the boundary layer equation based on the theoretical analysis, and its calculation is simulated on the flight time histories. The analysis considered the inner surface heat transfer with one dimensional solid heat conduction. The results showed that the major interior heat transfer is the radiation heat transfer, and the maximum outer surface temperature due to aerodynamic heating reached to $223^{\circ}C$ at fin and the maximum heating rate is about $133kW/m^2$ at nose cap. The whole analysis proved that the surface temperature remained below the allowable temperature, and the KSR-III thermal design satisfies the thermal environmental conditions.

Temperature Distribution of a Low Temperature Heat Pipe with Multiple Heaters for Electronic Cooling

  • Noh, Hong-Koo;Song, Kyu-Sub
    • ETRI Journal
    • /
    • v.20 no.4
    • /
    • pp.380-394
    • /
    • 1998
  • A numerical study has been performed to predict the characteristics on the transient operation of the heat pipe with multiple heaters for electronic cooling. The model of the heat pipe was composed of the evaporator section with four heaters, insulated transport section, and the condensor section with a conductor which is cooled with uniform heat flux condition to surrounding. The governing equations and the boundary conditions were solved by the generalized PHOENICS computational code employing the finite volume method. Two test cases are investigated in present study; Case 1 indicates that the 1st and 2nd heaters among four heating sources are heated off, while the 3rd and 4th heaters are heated on. Case 2 is the inverse situation switched from heating location of Case 1. The results show that the transient time to reach the steady state is shorter for Case 1 than for Case 2. Especially, the temperature difference of the heater during switching operation is relatively small compared to the maximum allowable operating temperature difference in electronic system. Hence, it is predicted that the heat pipe in present study operates with thermally good reliability even for switching the heaters.

  • PDF