• Title/Summary/Keyword: heating rates

Search Result 460, Processing Time 0.032 seconds

Optimization of Vegetable Rice Porridge Preparation with Israeli Carp Cyprinus carpio (향어(Cyprinus carpio) 함유 야채죽의 제조공정 최적화)

  • Sang In Kang;Ye Youl Kim;Jin-Soo Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.3
    • /
    • pp.275-283
    • /
    • 2023
  • This study optimized the vegetable rice porridge preparation process with Israeli carp Cyprinus carpio (VRP-IC). The optimum heating period for Israeli carp paste (IC-P) in a retort was 120 min as per yield results. Response surface methodology was performed with IC-P/[rice (glutinous rice: non-glutinous rice=6:4) (Rice, RI)+vegetable (carrot: zucchini=1:1) (vegetable, VE)] (X1) and RI/VE (X2) as independent variables; viscosity (Y1), hardness (Y2), amino nitrogen (Y3), and overall sensory acceptance (Y4) as dependent variables. Optimum rates of IC-P, RI, and VE were 47.37%, 24.49%, and 28.15%, respectively; predicted multiple response optimum values for the dependent variables were 20,150 mPa·s, 2,002.9 N/m2, 193.1 mg/100 g, and a 6.4 score for Y1, Y2, Y3, and Y4, respectively. Under optimum conditions, experimental values for Y1, Y2, Y3, and Y4 were 20,359.8±191.9 mPa·s, 2,015.0±9.6 N/m2, 188.1±4.9 mg/100 g, and a 6.5±0.2 score, respectively, which were not significantly different from the predicted values (P < 0.05). Results of F0 value, viscosity, hardness, volatile odor intensity, and browning suggested that the optimum sterilization period was 25 min. VRP-IC prepared under the optimum conditions was superior to commercial vegetable rice porridges in sensory evaluations.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

Investigation of Microbial Contamination in the Raw Materials of Meal Kits (간편조리세트 원재료의 미생물 오염도 조사)

  • Hyun-Kyung Lee;Young-Sook Do;Min-Jung Park;Kyoung Suk Lim;Seo-In Oh;Jeong-Hwa Lim;Hyun-Soo Kim;Hyun-Kyung Ham;Yeo-Jung Kim;Myung-Jin Lee;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.109-117
    • /
    • 2024
  • This study investigated the microbial contamination of agricultural, livestock, and marine ingredients in 55 meal kits distributed across Gyeonggi-do, South Korea. Of the 55 meal kits, 48 contained agricultural ingredients, 43 contained livestock ingredients, and 16 contained marine ingredients. The detection rate of the total aerobic bacteria in the agricultural, livestock, and marine products was 100%. The average numbers of the total aerobic bacteria were 6.57 log colony-forming units (CFU)/g in the agricultural products, 4.60 log CFU/g in the livestock products, and 5.47 log CFU/g in the marine products. The coliform detection rates in the agricultural, livestock, and marine products were 81.25%, 69.77%, and 43.75%, respectively. The average numbers of coliforms were 2.83 log CFU/g in the agricultural products, 1.34 log CFU/g in the livestock products, and 1.12 log CFU/g in the marine products. Escherichia coli was detected in 13 livestock products (30.23%), with levels ranging from 0.70 to 2.36 log CFU/g. Contrastingly, E. coli was detected in only one marine product (6.25%) and was not detected in any agricultural products. The detection rates of fungi in agricultural, livestock, and marine products were 97.92%, 93.02%, and 93.75%, respectively. The average numbers of fungi were 3.82 log CFU/g for the agricultural products, 2.92 log CFU/g for the livestock products, and 2.82 log CFU/g for the marine products. The isolation rates of foodborne pathogens from the agricultural, livestock, and marine products were 35.42%, 37.21%, and 31.25%, respectively. Forty-five foodborne pathogens of seven species, including Bacillus cereus and Salmonella spp., were isolated from the raw materials of the agricultural, livestock, and marine products in 55 meal kits. To prevent foodborne diseases caused by meal kits, it is necessary to focus on washing, heating, and preventing cross-contamination during cooking.

Effect of Heat Processing on Thermal Stability of Kudzu (Pueraria thumbergiana Bentham) Root Isoflavones (가열처리가 칡 이소플라본의 열 안정성에 미치는 영향)

  • Choi, Sung-Won;Kim, Kyung-Seon;Hur, Nam-Yun;Kim, Kyung-Seon;Ahn, Soon-Cheol;Park, Cheon-Seok;Kim, Byung-Yong;Baik, Moo-Yeol;Kim, Dae-Ok
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1447-1454
    • /
    • 2008
  • Effect of heat processing on thermal stability of kudzu root isoflavone was investigated for future use such as various processed foods and functional foods. Kudzu root extracts were heated at 80, 100, 121, 140, 165, and $180^{\circ}C$ for up to 90 minutes before and after concentration, respectively. Changes in the amount of isoflavones were monitored using HPLC and thermal stability was investigated using Arrhenius equation. The amount of both daidzin and genistin decreased slightly during heating at 80, 100 and $121^{\circ}C$ but decreased significantly above $140^{\circ}C$. This indicated that daidzin and genistin are stable at temperatures near the boiling point of water. The degradation of both daidzin and genistin occurred in two steps and each step showed typical first order kinetic. The degradation rates were faster in the first step than the second step in both daidzin and genistin. Additionally, the degradation was accelerated when they heated after concentration compared to the sample heated before concentration. These results suggested that degradation of kudzu root isoflavone was highly dependent on both their concentration and heating temperature. This study provides the basic information on thermal stability of kudzu root isoflavones, which can be used for future processing of functional foods.

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

Selection of suitable phyto-food organisms for the rotifer, Brachionus plicatilis cultivation in high and low water temperature seasons (고온기 및 저온기의 rotifer, Brachionus plicatilis 배양을 위한 적종 식물 먹이생물 선택)

  • HUR Sung Bum;LEE Chang-Kgu;LEE Eung-Ho
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.91-106
    • /
    • 1989
  • Chlorella has been used as a very useful food for rearing rotifer which is an important live food for early stages of fish and crustancean larvae. But Chlorella does not grow well in higher or lower temperature such as during summer or winter season in this country. Therefore, cooling or heating facilities are needed for Chlorella culture during summer or winter, but it costs too much for the commercial scale fish farmers. To solve this problem, the growth rates of 34 different species of phytoplanktons were examined at the various levels of temperatures, salinites and light intensities to select suitable species as the food for rotifers for summer and that for winter. After the suitable species were selected, growth comparisons of rotifer groups which were fed the selected species of phytoplanktons against rotifer group fed Chlorella as a control were done. Fatty acid compositions of the selected phytoplanktons and rotifer groups which were fed these selected phytoplanktons were examined. It was revealed that Nannnochioris oculata was optimum for rotifers in summer season and Phaeodactylum tricornutum was suitable for that in winter season. The optimum temperature, salinity and light intensity for former phytoplankton were $28^{\circ}C$, $33\%_{\circ}$ and 5,000 lux and those for later were $10^{\circ}C$, $30\%_{\circ}$ and 8,000 lux, respectively. In the higher temperature condition, the growth of N. oculata fed rotifer group was better than Chlorella ellipsoidea fed group. In the lower temperature condition, however, the growth of Chlorella fed rotifer group was slightly better than P. tricornutum fed group. Between two selected phytoplanktons, N. oculata has the highest content of linolenic acid (18 : 3 $\omega$ - 3, $\omega$ - 6) which is essential fatty acid for marine fish larvae. A rotifer group which was fed this plankton also showed the highest linolenic acid content among the other rotifer groups.

  • PDF

Characterization of Thermal Degradation of Polymide 66 Composite: Relationship between Lifetime Prediction and Activation Energy (폴리아미드 66 복합소재의 열 열화 특성: 수명 예측과 활성화 에너지의 상관관계)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.712-720
    • /
    • 2012
  • Thermal degradation for glass fiber-reinforced polyamide 66 composite (PA 66) with respect of thermal exposure time has been investigated using optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. As the thermal exposure time was prolonged, a slight increase in tensile strength for only initial stage and afterward, a proportional decrease of tensile strength was observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation with the exposure time. Fourier transform infrared spectroscopy results showed the increase of ketone peak and silica peak on the surface of thermally exposed PA 66. In addition, the thermal decomposition kinetics of PA 66 was analyzed using thermogravimetric analysis at three different heating rates. The relationship between activation energy and lifetime-prediction of PA 66 was investigated by several methodologies, such as statistical tool, UL 746B, Ozawa and Kissinger. The activation energy determined by thermogravimetric analysis had a relatively large value compared with that from the accelerated test. This may result in over-estimating the lifetime of PA 66. In this study, a master curve of exponential fitting has been developed to extrapolate the activation energy at various service temperatures.

Development on New Laser Tabbing Process for Modulation of Thin Solar Cell (박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발)

  • No, Donghun;Choi, Chul-June;Cho, Hyun Young;Yu, Jae Min;Kim, JungKeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

A Study on The Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis (비등온 열중량분석법을 이용한 급속 반탄화 참나무 목분의 열적 특성과 활성화 에너지 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.96-105
    • /
    • 2016
  • This study investigated thermal properties and activation energy ($E_a$) of torrefied oak wood powders treated with various torrefaction times (0, 5, 7.5, 10 min) by using non-isothermal thermogravimetric analysis at heating rates of 10, 20, $40^{\circ}C/min$ to check the feasibility of rapidly torrefied oak wood powders as a fuel. As the torrefaction time increases, onset of thermal decomposition temperature, lignin content, and the amount of final residue of torrefied oak wood powders were accordingly increased with reduced hemicellulose content. $E_a$ was determined by using Friedman and Kissinger models and respective R-square values were over 0.9 meaning very good availability of calculated $E_a$ values. The $E_a$ values of the samples were decreased with the increase of torrefaction time and the lowest $E_a$ value ob served in the torrefied oak wood powders treated for 7.5 min showed high feasibility of rapidly torrefied oak wood powder as a biomass-solid refuse fuel.