• Title/Summary/Keyword: heating capacity

Search Result 677, Processing Time 0.027 seconds

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.

Comparisons of Regeneration Methods Using Physical and Chemical Treatment for Phosphate Removal Restoration of Filter Media (여재의 인 제거기능 회복을 위한 물리화학적 재사용 방안 비교)

  • Kim, Ji Ah;Choi, I Song;Oh, Jong Min;Kim, Won Jae;Park, Jae Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.201-206
    • /
    • 2016
  • The purpose of this study is to find the regeneration method of filter media using physical and chemical treatment for restoration of phosphorus adsorption ability. The filtration material used in this study is called Adphos. In an experiment of heating treatment, re-used filter media is heated to a high temperature before the adsorption test. The results show that the $PO{_4}^{3-}-P$ adsorption capacity is in the range of 0.0021 - 0.0030 mg/g and the removal efficiency is in the range of 26.1 - 39.4%. In the experiment of acid or basic treatment, re-used filter media is exposed to a different pH condition before the adsorption test. The results show that the $PO_4^{3-}-P$ adsorption capacity is in the range of 0.0010 - 0.0066 mg/g and the removal efficiency is in the range of 15.8 - 87.1% after the acid treatments which have pH values of 1 - 5. However, after the basic treatments which have pH values of 8 - 11, the results show that the $PO{_4}^{3-}-P$ adsorption capacity is in the range of 0.0018 - 0.0034 mg/g and the removal efficiency is in the range of 26.7 - 48.0%. In an experiment of chemical treatment using NaCl, re-used filter media was exposed to a different NaCl concentration before the adsorption test. The results show that the $PO{_4}^{3-}-P$ adsorption capacity is in the range of 0.0036 - 0.0050 mg/g and the removal efficiency is in the range of 50.5 - 71.1%. In conclusion, chemical treatment using NaCl shows a high recovery probability of phosphorus adsorption ability of filter media.

Studies on the Processing Properties and Interactions Between Porcine Blood Proteins and Waxy Rice Starch During Making Porcine Blood Cake

  • Lin, Chin-Wen;Yang, Jeng-Huh;Chu, Hsien-Pin;Su, Ho-Ping;Chen, Hsiao-Ling;Huang, Chia-Cheong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 2001
  • The physiochemical properties and interactions between porcine blood and waxy rice were determined. Addition of calcium chloride (0.15%) improved acceptability of blood cake and increased the gelatinization degree of waxy rice. The water-holding capacity of porcine blood gel (blood/water=60/40, v/v), extent of absorption and gelatinization of waxy rice, and scanning electron microscopy showed that blood protein matrix and waxy rice are competitors for holding water in the cooking procedure. Non-haem iron content increased linearly (R=0.95) when heating temperature rose. The presence of blood proteins caused increasing of peak temperature (Tp) of gelatinization in differential scanning calorimetric thermal gram, The microstnlcture of plasma proteins and haemoglobin appeared continuous changes, and interacted with surface of waxy rice flour in terms of network and mosaic form, respectively. The electrophoretic patterns revealed an interaction between plasma proteins and waxy rice glutelin and haemoglobin when heated could be found at temperatures above $60^{\circ}C$.

Optimum Design of Middle-Sized CO2 Water Heater (중형 이산화탄소 급탕기의 최적 설계)

  • Park, Hanvit;Yun, Rin;Kim, Young Deug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.173-179
    • /
    • 2013
  • Middle-sized $CO_2$ water heater having compressor power of 7.45 kW was designed, and its performances were experimentally tested. Besides, optimum design of the $CO_2$ water heater was conducted by cycle simulation. When ambient temperature of $7^{\circ}C$ and hot water outlet temperature of $80^{\circ}C$ the $CO_2$ water heater showed the COP of 3.2. As hot water temperature increased the COP is getting decreased due to significant increase of compressor power consumption compared to increasing rate of heating capacity. When ambient temperature increased from $-3^{\circ}C$ to $12^{\circ}C$ the COP increased by 30%. The optimum components design of a gas cooler, an internal heat exchanger, and an evaporator were conducted, and the experimental correlation between amount of EEV opening and ambient temperature, and hot water temperature was suggested.

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

Integrated Building Energy Supply System : An Overview of Technical Trends for Gas Engine Driven Combined Heat and Power System (가스엔진 구동 건물에너지 통합 공급시스템 개발을 위한 기술동향 사례연구)

  • Park, Beungyong;Jeong, Yongdae;Shin, Hyunchul;Cho, Jinkyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.612-620
    • /
    • 2017
  • Power consumption in Southeast Asia is steadily increasing due to industrialization and the effects of hot and humid climates. However, there are not enough energy generation facilities and infrastructures to meet the growing demand because it is difficult to secure the construction and operation costs of the transmission and distribution systems. This study aims to develop a gas engine driven heat pump system that supplies heating, cooling and electric power to buildings. This system, besides its normal function to produce heat, has the capacity to generate electricity on a household level. This paper investigates similar cases overseas before developing the system. Through the investigation of commercialized similar systems, the level of technology and market trend of development system were identified. Features and specifications of commercial and industrial systems will be used for system development.

Development of CFD model for analyzing the air flow and temperature distribution in greenhouse with air-circulation fans (유동팬이 설치된 온실 내 기류 및 기온분포 해석을 위한 CFD 모델 개발)

  • Yu, In-Ho;Yun, Nam-Kyu;Cho, Myeong-Whan;Ryu, Hee-Ryong;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.461-472
    • /
    • 2014
  • This study was conducted to build the CFD simulation model which can quantify the distribution of the meteorological factors in air-heated greenhouse for chrysanthemum according to the location and capacity of air-circulation fan. The CFD model was also verified by experiment. It was judged that SST model was the most appropriate turbulence model which can properly describe the airflow by the air-circulation fan. According to the simulation results, the differences between the measured and predicted temperatures from 18 points at each height in the greenhouse were $0.2{\sim}0.4^{\circ}C$ in average. This showed a good agreement between the predicted data and the measured ones. The developed CFD model can be a useful tool to evaluate and design the air-circulation systems in the greenhouse with various configurations.

Condensing Heat Transfer Characteristics on a Heat Pump System Using Non-Azeotropic Refrigerant Mixtures (비공비혼합냉매를 사용하는 열펌프의 응축열전달 특성)

  • 박기원;오후규;김욱중
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1125-1133
    • /
    • 1995
  • Experiments were performed to investigate the condensing heat transfer characteristics of non-azeotropic mixtures of R-22 and R-114 in a heat pump system with a horizontal smooth tube as a condenser. The ranges of parameters, such as heating capacity, mass flow rate of refrigerant and quality were 780-3,480W, 24-71kg/h, and 0-1, respectively. The overall compositions of R-22 in a R-22/114 mixture were 25, 50, 75 and 100 per cent by wight. The results show that the overall condensing heat transfer coefficients for the mixtures were lower than the pure R-22 values. Local heat transfer coefficient of the pure R-22 was hghest at the top of the test tube. The local heat transfer coefficient of R-22/114 (50/50 wt%) at side and bottom of the test tube was higher than that at the top. From the obtained data, a prediction for the condensing heat transfer coefficients of the mixture was done based on the method of Fujii.

A study on the Thermal Characteristics of a Thermal Storage Tank for using Gravels (자갈식 축열조의 축열특성에 관한 연구)

  • Park, Jung-Won;Park, Bong-Kyu;Ahn, Sang-Kyu
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • The purpose of this study was to investigate the fluid flow characteristics of heat storage in sensible heat storage system for use In cooling and heating of buildings. Heat storage material was gravels and experiments were performed in the condition of constant temperature. The experimental parameters were fluid velocity and size of gravels. The experimental results of the heat storage quantity and the heat storage efficiency by the variation of packing size and fluid velocity were as the follows : The maximum value of the heat storage capacity and heat storage efficiency and the minimum arriving time for maximum heat storage were observed when the packing ratio was 72.5% and the fluid velocity was 0.14m/s.

  • PDF

Transition State Characterization of the Low- to Physiological-Temperature Nondenaturational Conformational Change in Bovine Adenosine Deaminase by Slow Scan Rate Differential Scanning Calorimetry

  • Bodnar, Melissa A.;Britt, B. Mark
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.167-170
    • /
    • 2006
  • Bovine adenosine deaminase undergoes a nondenaturational conformational change at $29^{\circ}C$ upon heating which is characterized by a large increase in heat capacity. We have determined the transition state thermodynamics of the conformational change using a novel application of differential scanning calorimetry (DSC) which employs very slow scan rates. DSC scans at the conventional, and arbitrary, scan rate of $1^{\circ}C/min$ show no evidence of the transition. Scan rates from 0.030 to $0.20^{\circ}C/min$ reveal the transition indicating it is under kinetic control. The transition temperature $T_t$ and the transition temperature interval ${\Delta}T$ increase with scan rate. A first order rate constant $k_1$ is calculated at each $T_t$ from $k_1\;=\;r_{scan}/{\Delta}T$, where $r_{scan}$ is the scan rate, and an Arrhenius plot is constructed. Standard transition state analysis reveals an activation free energy ${\Delta}G^{\neq}$ of 88.1 kJ/mole and suggests that the conformational change has an unfolding quality that appears to be on the direct path to the physiological-temperature conformer.