• Title/Summary/Keyword: heater trigger

Search Result 12, Processing Time 0.018 seconds

Analysis of the Operational Characteristics of High-Tc Superconducting Power Supply Using by BSCCO Tape (BSCCO 고온초전도선재를 이용한 고온초전도전원장치의 동작특성 해석)

  • Ahn, Min-Cheol;Kim, Ho-Min;Yoon, Yong-Soo;Ko, Tae-Kuk;Lee, Sang-Jin;Han, Tae-Su
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.12-14
    • /
    • 2001
  • This paper deals with the fabrication and characteristic experiment of a high-Tc superconducting (HTSC) power supply using by Hi-2223 tape. The purpose of this research is to apply real HTSC load. This system consists of two heaters, an electromagnet, a Bi-2223 solenoid and a Bi-2223 pancake load. In the experiment, 17sec and 8.5sec were used for pumping period. Mechanism of the superconducting switch is used for heater-trigger. In experiment, the pumping-current has reached about 1.2A.

  • PDF

Development of Digital Solder Station Based on PID Controller (PID 제어기를 이용한 전기인두기의 온도 제어 시스템 개발)

  • Oh, Kab-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.866-872
    • /
    • 2010
  • In this paper, we developed a digital soldering station based on PID controller, which supply stable power by controlling the current of heater of soldering iron. The proposed system designed PID controller to converge quickly to the set up temperature by user, and regain the lost of heat by external factors quickly. PID controller, designed by Ziegler-Nichols' tuning method, decides triac's trigger timing using setting temperature and present temperature to control the phase of AC 24V power that supply to the heater. Also, we give the function that shows present temperature and setting temperature of iron, and working time by graphic LCD. And during the rest time, we decided the power saving and extension of iron tip by dropping to the optimal temperature. Two experiments had implemented in $25^{\circ}C$ laboratory to confirm the performance of proposed method. The first experiment took 12sec, 13sec, 16sec, 18sec, reaching to $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $480^{\circ}C$ respectively which result showed shorten of rising time than previous method. In the loading experiment of $300^{\circ}C$, $400^{\circ}C$, $480^{\circ}C$ steady state showed temperature drop of $3.8^{\circ}C$, $4.1^{\circ}C$, $4.5^{\circ}C$ which result showed the low temperature deviation than previous method.