• Title/Summary/Keyword: heat-stable

Search Result 1,281, Processing Time 0.029 seconds

Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature (지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토)

  • Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

Effects of Heat-treated Bovine Lactoferrin on the Growth of Lactococcus lactis subsp. cremoris JCM 20076

  • Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • This study investigated the effects of heat-treated and non-heat-treated bovine lactoferrin on the growth of Lactococcus lactis subsp. cremoris JCM 20076. The addition of heat-treated and non-heat-treated bovine lactoferrin in adjusted MRS medium stimulated the growth of Lc. cremoris JCM 20076. Heat-treated bovine lactoferrin had a greater impact on the growth of Lc. cremoris JCM 20076 compared to that with non-heat-treated bovine lactoferrin. Bovine lactoferrin heated at $65^{\circ}C$ for 30 min stimulated the growth of the bacteria more than that heated at $80^{\circ}C$ for 5 min. Furthermore, the growth of Lc. cremoris JCM 20076 increased substantially with heat-treated bovine lactoferrin at a concentration of 1 mg/mL.

Production of the Monoclonal Antibodies to the Escherichia coli Heat-Stable Enterotoxin (대장균의 내열성장독소 측정법개발을 위한 단세포군항체의 생산)

  • Chang, Woo-Hyun;Lee, Woo-Kon;Kim, Suck-Yong;Park, Jung-Bum
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.4
    • /
    • pp.377-392
    • /
    • 1987
  • Monoclonal antibody to the Escherichia coli heat-stable enterotoxin(ST) was produced to develop a rapid and convenient diagnostic method to the ST. The toxin was purified from culture supernatant of enterotoxigenic E. coli O148H28($ST^+/LT^+$) and conjugated to bovine serum albumin(BSA). The ST-BSA conjugate was used to immunize BALB/c mice and the immune spleen cells from these mice were fused with $P3{\times}63$ Ag8.V653 plasmacytoma cells. Hybridomas were screened by ELISA and positive hybridomas were cloned by limiting dilution. Finally, one stable clone (AS36) specific to ST was selected for further growth and characterization. Antibody titers of culture supernatant and ascitic fluid from BALB/c mice were 1:1,024 and 1:20,480 respectively in ELISA. The isotype and subclass of monoclonal antibody was IgG1 in sandwich ELISA. To test the neutralizing effect of monoclonal antibody on toxin activity of ST, mixture of ascitic fluid and ST was assayed by infant mouse assay and this monoclonel antibody was proved to be a neutralizing antibody. The titer of ascitic fluid which completely neutralized biological activity of 4 units of ST was 1:4. Purified ST was quantitatively measured by competitive ELISA and minimum amount of ST detectable by this assay was 250pg, which was an amount six-fold smaller than that detectable by infant mouse assay. Four reference strains of enterotoxigenic E. coli from WHO were detected by competitive ELISA and highly specific, sensitive and reproducible result was obtained.

  • PDF

The Effect of Calcium on Microstructure of AZ61 Magnesium Alloy during Annealing Heat Treatment (AZ61 마그네슘 합금의 어닐링 중 Ca의 첨가에 따른미세조직 변화에 미치는 영향)

  • Kim, Kibeom;Jeon, Joonho;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2021
  • Due to high specific strength and low density, AZ series magnesium alloys have been receiving high interest as a lightweight material. However, their industrial application is limited due to the phenomenon that the strength decreases at elevated temperature by the occurrence of softening effect because of the Mg17Al12 phase decomposition. To solve this problem, many research were conducted to increase the high-temperature strength by forming a thermal stable second-phase component by adding new elements to the AZ magnesium. Especially, adding Ca to AZ magnesium has been reported that Ca forms the new second-phase. However, studies about the analysis of decomposition or precipitation temperature, formation composition, and components to understand the formation behavior of these precipitated phases are still insufficient. Therefore, the effect of Ca addition to AZ61 on the phase change and microstructure of the alloy during annealing was investigated. As a result of analysis of the initial and heat-treated specimen, AZ61 formed α-Mg matrix and precipitated phase of Mg17Al12, and AZX611 formed one more type of precipitated phase, Al2Ca. Also, Al2Ca was thermal stable at high temperatures. And after annealing, the laves phase was decomposed to under 10 ㎛ size and distributed in matrix.

Study on Optimal Welding Condition for Shipbuilding Steel Materials (조선강재의 최적 용접조건에 관한 연구)

  • Kim, Ok-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Characteristic study of heat transfer of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 열전달특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1447-1451
    • /
    • 2004
  • The laminar impinging jet thermal fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of heat transfer at impingement wall are changed

  • PDF

Production and Heat-Stable Characteristics of Emulsion Made from Buckwheat Sprout Extracts (메밀 싹 추출물 에멀젼의 제조 및 에멀젼의 열 안정 특성)

  • Cha, Bo-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1549-1554
    • /
    • 2014
  • This study analyzed the production and heat stability of an emulsion made from buckwheat sprout extracts with high rutin content. To obtain high rutin contents, buckwheat was sprouted and the polyphenols and rutin were extracted from buckwheat sprouts. Concentrated extracts were made into an emulsion using a homo mixer and hydraulic homogenizer, after which heat stability was analyzed. The polyphenol contents were highest in ground sprouts grown for 8 days (10.66 mg/g), which was 10 times higher than those of buckwheat seeds. Extraction with 50% ethanol after blanching was the most effective method for obtaining extracts with higher polyphenol content and rutin content. Extracts were concentrated up to 60% soluble solid content and then emulsified using a homo mixer and hydraulic homogenizer. Heat stability of the emulsion passed through the hydraulic homogenizer was slightly higher than that made using the homo mixer. The heat stability of the emulsion was more strongly affected by heating time than temperature. In conclusion, the buckwheat concentrate emulsion passed through the hydraulic homogenizer was more heat stable than buckwheat extract alone.