• Title/Summary/Keyword: heat-curing resin

Search Result 107, Processing Time 0.029 seconds

Pattern Formation by the watersoluble PSR ink (수성 PSR 잉크를 이용한 패턴 형성)

  • Lee, Myung-Su;Kim, Young-Bea;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2004
  • PSR ink is used to insulation coating material that heat resistance is. The use purpose is used for bridge prevention, circuit protection, stabilization of insulation. Heat-cured resin was used mainly on the materials of PSR inks. But, UV-curing type resin in used. Also, because of recently environmental problem, ink is going to water type. Purpose of this study is to develop PSR ink that can develop in pure water. and experiment did that do from that find suitable oligomer and monomer and does brand ratio differ. Specially Knew that is extent water soluble UV resin develop possible is DPHA 10~50% that A/A1924 is 50~90wt %, monomer. As a result, when ratio of A/A1924 and DPHA low viscosity epoxy resin is 5:1.5:1.5, could get high sensibility pattern repeatability, tack and alkali-resistance.

  • PDF

A Study on the Dielectric Properties of Mica-reinforced Silicone Composites (마이카 강화 실리콘 복합재료의 제작과 그 유전적 특성에 관한 연구)

  • 조정수;곽영순;김순태;박차수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.640-651
    • /
    • 1992
  • This paper describes the electric properties of mica reinforced silicone composites with the parameter of curing condition of silicone resin, application amount of silane coupling agent to the mica paper and the mica wt% to the composite. Heat-resistant silicone resin and mica paper made of mica flakes are used to prepared the mica/silicone composite as matrix and filler, respectively. To improve the dielectric properties and interfacial adhesion between matrix and filler, silane coupling agent is applied on the mica paper. As for matrix, tan$\delta$ value of 30$0^{\circ}C$ heat-treated silicone resin is the lowest under 1%. The optimal wt% of coupling agent is 0.3% to the weight of mica paper. 80 wt% of mica as filler to the mica/silicone composite shows the best electric properties. And the mica reinforced silicone composite shows good high-frequency and mechanical tensile stress properties.

  • PDF

THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION (중합조건에 따른 dual cured resin cement의 열분석적 연구)

  • Lee, In-Bog;Chung, Kwan-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Cure and Heat Transfer Analysis in LED Silicone Lens using a Dynamic Cure Kinetics Method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화 및 열전달해석)

  • Song, M.J.;Kim, K.H.;Hong, S.K.;Park, J.Y.;Lee, J.W.;Yoon, G. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Recently, silicone is being used for LED chip lens due to its good thermal stability and optical transmittance. In order to predict residual stresses, which cause optical birefringence and mechanical warpage of silicone, a finite element analysis was conducted for the curing of silicone during molding. For the analysis of the curing process, a dynamic cure kinetics model was derived based on the results of a differential scanning calorimetry (DSC) testing and applied to the material properties for finite element analysis. Finite element simulation results showed that a step cure cycle reduced abrupt reaction heat and showed a decrease in the residual stresses.

Synthesis and Curing Behavior of Crystalline Biphenyl Epoxy Resin (결정성 바이페닐 에폭시 합성 및 경화 거동 연구)

  • Choi, Bong-Goo;Choi, Ho-Kyoung;Choi, Jae-Hyun;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • The basic catalyst 1-benzyl-3-methyl-imidazolium hexafluoroantimonate (BMH) was synthesized and analyzed by FT-IR and 1H-NMR. A crystalized biphenyl-based epoxy was synthesized by using tetramethyl biphenol (TMBP) and epichlorohdrine. In order to consider the curing tendency of the synthesized BMH, the mass ratio was changed to 0.5, 1.0, 2.0 wt.% under heated conditions and the curing tendency was analyzed by differential scanning calorimeter (DSC). As a result, the BMH catalyst showed a fast curing result in the stepwise heating pr℃ess of the biphenol-A epoxy and the cationic polymer. From these results, the BMH catalyst showed excellent thermal stability as a potential heat curing catalyst. In addition, we considered the application possibility of epoxy molding compound (EMC) which required a skeleton structure and a high heat resistance because the synthesized biphenyl epoxy had a characteristic of rapidly lowering viscosity at a constant temperature and a rigid skeleton structure of biphenol. As a result, it was confirmed that the TMBP-based epoxy developed in this study was composed of a crystalline structure, and a curing reaction was observed with a Novolac resin at a high temperature. In the presence of a catalyst, a curing reaction was observed around 150 ℃ and thus TMBP-based epoxy was successfully applied as a raw material of EMC.

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

TEMPERATURE TRANSMISSION OF PAC UNIT THROUGH DENTIN (상아질을 통한 플라즈마 아크 광중합기의 온도 전달)

  • Park, Ho-Won;Kim, Ji-Hun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.707-714
    • /
    • 2003
  • Plasma Arc Curing(PAC) units operate at relatively high intensity and claimed to result in optimum properties of composite resin in a short curing time, so the interest of pediatric dentists about PAC units have been increased recently. But PAC units used for polymerizing restorative resins produce heat during operation. The purpose of this study was to evaluate temperature transmission through dentin of various depths using two types of PAC units(Flipo, Q-Lux plasma 100). The results from the present study can be summarized as follows : 1. When PAC be used continuously, temperature on tip was increased as curing times, and Q-Lux showed greater temperature rising(p<0.001). 2. Compared temperature transmission as dentin depth, temperature rising rate was decreased as dentin thickened(0.5, 1.0, 1.5, 2.0mm)(p<0.05). 3. Compared temperature transmission as resin depth, temperature rising rate was also decreased as resin thickened(1.0, 2.0mm)(p<0.05).

  • PDF

Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

  • Kim, Hyun-Dong;Lee, Joo-Hee;Ahn, Kang-Min;Kim, Hee-Sun;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.104-109
    • /
    • 2013
  • PURPOSE. Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiberreinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS. Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and three surface treatments (no treatment; air drying; drying at $38^{\circ}C$). Every specimen were bonded with dual-curing resin cement (Variolink N) and stored in distilled water for 24 hours at $37^{\circ}C$. Shear-bond strength (MPa) between the fiber post and the resin cement were measured using universal testing device. The data were analyzed with 1-way ANOVA and by multiple comparisons according to Tukey's HSD (${\alpha}$=0.05). The effect of surface treatment, fiber post type, and the interactions between these two factors were analyzed using 2-way ANOVA and independent sample T-tests. RESULTS. Silanization of the FRC Postec Plus significantly increased bond strength compared with the respective non-treated control, whereas no effect was determined for the D.T. Light Post. Heat drying the silane coupling agent on to the fiberreinforced post did not significantly improve bond strength compared to air-syringe drying. CONCLUSION. The bond strength between the fiber-reinforced post and the resin cement was significantly increased with silanization in regards to the FRC Postec Plus post. Bond strength was not significantly improved by heat activation of the silane coupling agent.

A STUDY ON THE DEGREE OF POLYMERIZATION OF AUTOPOLYMERIZED RESIN FOR REMOVABLE ORTHODONTIC APPLIANCE ACCORDING TO CURING TIME AND CURING METHOD (중합시간과 중합방법에 따른 자가중합형 상교정용 레진의 중합률의 비교에 관한 연구)

  • Yoo, Jong-Wook;Jang, Ki-Taeg;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.296-309
    • /
    • 1999
  • Autopolymerized resin facilitates a more rapid and easier means for the construction of removable orthodontic appliances than heat cured resin. But many reports reveal that more unreacted monomer is found in autopolymerized resin. It is very important to achieve maximum degree of polymerization because if polymerization is inadequate, high level of unreacted monomer has been shown to adversely affect mechanical and physical properties, and also the question of allergy or toxicity to methylmethacrylate must be considered. The purpose of this study was to compare the degree of polymerization according to curing method and curing time. Five groups were desinged ; Group 1 was polymerizied at room temperature($28^{\circ}C$) ; Group 2 in $28^{\circ}C$ water ; Group 3 in $28^{\circ}C$ water under 30psi pressure ; Group 4 in $43^{\circ}C$ water ; Group 5 in $43^{\circ}C$ water under 30psi pressure for 10 minutes, 1 hour 12 hours, 1 day and 3 days. The degree of polymerization was measured by means of Fourier Transform Infrared spectroscopy. The results were as follows: 1. The degree of polymerization increased constantly in accordance with curing time in all groups and after curing for 10 minutes, Group 1 showed significantly higher degree of polymerization after 12 hours and Group 2, Group 3, Group 4, Group 5 after 1 hour(p<0.05). 2. The degree of polymerization decreased in the order of Group 5, Group 4, Group 3, Group 2, Group 1 except when the curing time was 1 hour and 12 hours(p<0.05). 3. The degree of polymerization of Group 4, Group 5 cured at $43^{\circ}C$ showed significantly higher degree of polymerization than Group 2, Group 3 at $28^{\circ}C$ except when the curing time was 1 day(p<0.05). 4. Among Group 2, Group 3 and Group 4, Group 5, the pressure had no effect on polymerization except when the curing time was 12 hours(p<0.05). 5. Between Group 1 and Group 2, the method of storage had no effect on polymerization except when the curing time was 1 hour(p<0.05).

  • PDF