• 제목/요약/키워드: heat-absorption

검색결과 947건 처리시간 0.026초

수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향 (Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (I))

  • 김병주;이찬우
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.489-498
    • /
    • 1998
  • Among the heat/mass exchange units composing an absorption system, the absorber, where the refrigerant vapor is absorbed into the liquid solution is the one least understood. In the present study, the effects of non-absorbable gas on the absorption process of aqueous lithium bromide solution falling film inside a vertical tube were experimentally investigated. In the range of film Reynolds number of 30 ~ 195, heat and mass transfer characteristics were investigated as a function of non-absorbable gas volumetric concentration, 0.2 ~ 20%. An increase of non-absorbable gas volumetric concentration degraded the mass transfer rate dramatically in the absorption process. The reduction of mass transfer rate was significant for the addition of small amount of non-absorbable gas to the pure vapor. At film Reynolds number of 130, an increase of non-absorbable gas concentration from 0.2 to 6.0% resulted in the decrease of mass transfer rate by 36% and 20% of non-absorbable gas by 59%. However the decrease of film Nusselt number with the increase of volumetric concentration of non absorbable gas was relatively smaller than the decrease of Sherwood number. Critical film Reynolds number was identified to exist for the maximum heat and mass transfer regardless of the volumetric concentration of non-absorbable gases.

PCM물질을 적용한 자연대류형 방열기의 방열특성에 관한 실험적 연구 (An Experimental Study on the Heat Dissipation Characteristics of the Natural Convection Type Radiator by using the PCMs)

  • 성대훈;김민준;김종하;윤재호;김우승;백종현
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1155-1160
    • /
    • 2008
  • In the present study investigated the heat dissipation characteristics of the natural convection type radiator by using the latent heat from a solid-liquid PCM(Phase Change Material). Total radiator volume size is $423{\times}295{\times}83\;mm$ and PCM tank size is $398{\times}270{\times}26\;mm$. The objective was elapsed time lower than maximum operating temperature. Experimental condition, in order to study the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, and heat of fusion temperature of two type PCMs. For the above experimental conditions, the cooling performance by using the latent heat showed that heat absorption rate performs for about 3 hours from using PCM $38^{\circ}C$. However, cooling performance by using PCM $50^{\circ}C$ showed higher than surface temperature of heater block because of heat of fusion.

  • PDF

수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구 (A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy)

  • 이민재;임용빈;배상철;김종수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석 (Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature)

  • 윤희정;김성수;강용태
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

수직 액막형 흡수기의 성능 최적화에 관한 연구 (Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

Thermal and Absorbing Performance in a Vertical Absorber

  • Cho, Keum-Nam;Kim, Jung-Kuk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.51-59
    • /
    • 2000
  • The purpose of the present study is to investigate the absorbing characteristics in a vertical falling film type absorber using LiBr-H$H_2O$ solution as working fluids with the concentration of 60 wt%. The experimental apparatus consists of an absorber with the diameter of 17.2 mm and the length of 1150 mm, a generator, an evaporator (condenser), a weak solution tank and a sampling trap device and so on. The parameters were the solution temperatures of 45 and 50$^{\circ}$C, coolant temperatures of 30 and 35$^{\circ}$C, and the film Reynolds numbers from 50 to 150. The pressure drop in the absorber increased as the solution and coolant temperatures decreased. The pressure drop in the absorber increased up to the film Reynolds number of 90, however, decreased at the film Reynolds number above 90. The maximum absorption mass flux was observed at the film Reynolds number of 90. Absorption mass fluxes increased as the coolant temperature decreased. Accordingly, absorption mass fluxes and heat transfer coefficients under the subcooled condition increased more than those under the superheated condition. It is claimed that heat transfer coefficients are deeply affected by the solution temperature more than the coolant temperature within the experimental range.

  • PDF

흡수식 냉동기 고온재생기 내의 가스복사체 열전달 특성에 관한 연구 (A study on the heat transfer characteristics of gas-radiative medium into a high temperature generator of an absorption refrigerator)

  • 정대인;김용모;배석태
    • 태양에너지
    • /
    • 제18권1호
    • /
    • pp.81-89
    • /
    • 1998
  • In this paper an experimental was done to design combustion chambers which is required radiation strength of high temperature generator of absorption rigerator. Partiqularly, in combustion chamber radiative mediums were set and basic experiments were done according to its size by radiation strength and effects of heat transfer promotion. The results are as follows : 1) When radiative mediums were set in small combustion furnace burning nonframely radiative heat transfer was effected. 2) In case that area ratio($A/A_o$) of radiative medium is 0.82 or over, temperature fluctuation effects of furnace inside were not nearly. 3) In experimental boundary heat transfer effects were 1.8 times by setting up radiative medium. Specially, $q/{\Delta}T$ values of furnace inside were uniformed nearly by setting up radiative mediums.

  • PDF

열처리(熱處理) 죽재(竹材)의 동적점탄성(動的粘彈性) (Dynamic Viscoelasticity of Heat-Treated Bamboo)

  • 홍병화;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.67-73
    • /
    • 1995
  • This study was undertaken to investigate the effect of heat treatment on the dynamic viscoelasticity of three species of Phyllostachys bambusoides, Phyllostachys nigra var. henonis and Phyllostachys pubescens, grown in southern Korea. The bamboo was treated for 3~24 hours at $60{\sim}180^{\circ}C$, and then was treated in a climatic chamber for 3~48 hours at $40^{\circ}C$ and 95% relative humidity. The results obtained are summarized as follows : 1. Dynamic Young's modulus decreased with increasing temperature and duration of the heat treatment. 2. Internal friction decreased with increasing treatment duration. 3. Moisture absorption decreased with increasing temperature and duration of the heat treatment. 4. Dynamic viscoelasticity decreased, whereas internal friction slowly increased, with increasing moisture content.

  • PDF

태양열 유동층 흡열기의 기체 열흡수 특성 (Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver)

  • 박새한;김성원
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.239-246
    • /
    • 2021
  • 태양열 SiC 입자 유동층 흡열기(내경 50 mm, 높이 150 mm)에서 수력학적 특성 및 기체 열흡수 특성이 연구되었다. 측정 구간 내에서, 기체 속도가 증가할수록 유동층 내 고체체류량은 일정하였으나, 유사한 기체속도 구간(Ug = 0.03-0.05 m/s)에서 미세한 SiC 입자(SiC II; dp=52 ㎛, ρs=2992 kg/㎥)는 굵은 SiC 입자(SiC I; dp=123 ㎛, ρs=3015 kg/㎥) 대비 유동층 내 압력요동의 상대 표준편차는 낮았으며, 프리보드 내 고체체류량은 상대적으로 높은 값을 나타내었다. 미세한 SiC II 입자는 굵은 SiC I 입자 대비 일사량의 변화에 관계없이 상대적으로 높은 일사량 당 흡열기 입출구 온도차를 보였고, 이는 상대적으로 균일한 유동층 내 입자 거동에 의한 층 표면 수용 열의 효율적인 열확산 효과에 더하여, 프리보드 영역에서 비산된 입자에 의한 추가적인 태양열 흡수 및 기체로의 열전달 효과에 기인한다. 본 시스템에서 기체속도 및 유동화 수가 증가할수록 열 흡수 속도 및 열효율은 증가하였다. SiC II 입자는 최대 17.8 W의 열 흡수 속도와 14.8%의 열효율을 보였고, 이는 SiC I 입자 대비 약 33% 높은 값을 나타내었다.

저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션 (Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation)

  • 백영진;김민성;장기창;이영수;윤형기
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.145-151
    • /
    • 2010
  • 본 연구에서는 지열발전 등과 같은 저온 열원을 에너지원으로 하는 발전에 응용될 수 있는 흡수식 동력 사이클의 출력 최적화를 수행하였다. 이를 위해 정상상태 사이클 시뮬레이션을 수행하여 사이클의 성능을 고찰하였다. 시뮬레이션은 열원과 열침의 입구온도 및 유량을 고정한 상태에서 수행하였으며, 일반적인 발전소의 열원-열침 유량비를 고려하였다. 사이클의 성능은 두 개의 독립변수를 이용하여 나타내었는데, 이는 분리기 입구 암모니아 농도와 터빈 입구 압력이다. 시뮬레이션 결과, $100^{\circ}C$의 지열수와 $20^{\circ}C$의 냉각수(지열수 유량의 5배) 조건에서, 흡수식 동력 사이클을 이용하면 지열수 유량 1 kg/s 당 최대 약 14 kW의 출력을 얻을 수 있음을 보였다.