• 제목/요약/키워드: heat treatment effect

검색결과 2,453건 처리시간 0.027초

냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구 (Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet)

  • 이정호;유청환;도규형
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.

수치해석을 통한 유도가열 코일의 설계 및 설계인자의 민감도 해석 (Design and Sensitivity Analysis of Design Factors for Induction Heating System)

  • 오동욱;김태훈;도규형;박장민;이정호
    • 열처리공학회지
    • /
    • 제26권5호
    • /
    • pp.233-240
    • /
    • 2013
  • Rapid and homogeneous heating in heat treatment has been a challenging engineering issue throughout a heating temperature over $1,000^{\circ}C$. Induction heating has been widely used in field of heat treatment compared with conventional heating system. Advantages in homogeneous heating, simple fabrication, and repeatable use can be efficiently made with the induction heater. In this paper, numerical analysis of an induction coil system for heat flux gauge heating is performed. The effect of configuration on the heating performance was considered in various cases of the coil radius, distance between the winding, relative height difference between the heat flux gauge and the coil, and the applied current frequency. Temperature distribution within the heat flux gauge at frequency-steady state was calculated with a finite element method. Sensitivity analysis was also performed and the relative importance of 2 key parameters; coil radius, distance between the winding, were taken as main contributors for induction heating.

비조질강의 바우싱거 효과에 미치는 변형율 영향 (Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel)

  • 권용남;이영선;김상우;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

Sursulf 처리후 고주파 표면경화된 저탄소강의 경도 및 마모특성에 미치는 Sursulf 처리시간 및 고주파 경화 이송속도의 영향 (The Effect of Sursulf Treating Time and Traveling Speed during Induction Hardening on Hardness and Wear Characteristics of Low Carbon Steel Combined-Heat-Treated)

  • 노용식;김영희;이평호;신호강;이상윤
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.17-26
    • /
    • 1989
  • This study has been performed to investigate into some effects of the Sursulf treatment time and the traveling speed of surface hardening treatment on the hardness and the wear characteristics by applying the combined heat treating techniques of Sursulf process followed by induction hardening treatment to mild steel. It has been shown that increasing the Sursulf treatment time increases the case depth, but both hardness and wear resistance are not considerably improved. When the combined heat treating technique of high frequency induction heating after Sursulf treatment is applied, an improvement in case depth as well as wear resistance is obtained. In particular, the hardness in diffusion zone is greatly increased due mainly to the formation of martensite and possibly lower bainite. Iron oxides formed during induction heating and subsequent water spray cooling in the outermost part of compound layer may be considered to cause some increases in hardness and wear resistance.

  • PDF

Fe-7%Ni-0.4%C 마르텐사이트합금의 미세조직과 진동감쇠능에 미치는 용체화처리온도의 영향 (Effect of Solution-Treatment Temperature on Microstructure and Damping Capacity of a Martensitic Fe-7%Ni-0.4%C Alloy)

  • 이영국;지광구;최종술
    • 열처리공학회지
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 1998
  • The objective of this study is to investigate the effect of solution-treatment temperature on the microstructure and damping capacity of a martensitic Fe-7%Ni-0.4%C alloy. The size of lath increased from $0.3{\mu}m$ to $0.55{\mu}m$ with increasing the solution-treatment temperature from 700 to $1100^{\circ}C$. In addition, the size of block, packet, and austenite grain had tendency to increase with increasing solution-treatment temperature. The damping capacity of the Fe-7%Ni-0.4%C martensitic alloy decreased with increasing the solution treatment temperature. The reason is not attributed to the increase in the size of lath, block, packet, and austenite grain, but to the increase in vacancy concentration which hinders dislocation motion.

  • PDF

AZ61 마그네슘 합금의 어닐링 중 Ca의 첨가에 따른미세조직 변화에 미치는 영향 (The Effect of Calcium on Microstructure of AZ61 Magnesium Alloy during Annealing Heat Treatment)

  • 김기범;전준호;김권후
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2021
  • Due to high specific strength and low density, AZ series magnesium alloys have been receiving high interest as a lightweight material. However, their industrial application is limited due to the phenomenon that the strength decreases at elevated temperature by the occurrence of softening effect because of the Mg17Al12 phase decomposition. To solve this problem, many research were conducted to increase the high-temperature strength by forming a thermal stable second-phase component by adding new elements to the AZ magnesium. Especially, adding Ca to AZ magnesium has been reported that Ca forms the new second-phase. However, studies about the analysis of decomposition or precipitation temperature, formation composition, and components to understand the formation behavior of these precipitated phases are still insufficient. Therefore, the effect of Ca addition to AZ61 on the phase change and microstructure of the alloy during annealing was investigated. As a result of analysis of the initial and heat-treated specimen, AZ61 formed α-Mg matrix and precipitated phase of Mg17Al12, and AZX611 formed one more type of precipitated phase, Al2Ca. Also, Al2Ca was thermal stable at high temperatures. And after annealing, the laves phase was decomposed to under 10 ㎛ size and distributed in matrix.

구리함량과 어닐링 온도가 NiTi 합금의 형상기억효과에 미치는 영향 (Effect of Cu Content and Annealing Temperature on the Shape Memory Effect of NiTi-based Alloy)

  • 양혁진;문형주;조예슬;박준홍;윤현준;최인철;오명훈
    • 열처리공학회지
    • /
    • 제37권2호
    • /
    • pp.79-85
    • /
    • 2024
  • The effects of annealing heat treatment and the addition of Cu element on the shape memory effect of the NiTi-based alloy were investigated by analyzing differential scanning calorimeter results and characterizing recovery rate through 3D scanning after Vickers hardness test. Through 3D scanning of impressions after Vickers hardness test, the strain recovery rates for specimens without annealing treatment and annealed specimens at 400, 450, and 500℃ were measured as 45.96%, 46.76%, 52.37%, and 43.57%, respectively. This is because as the annealing temperature increases, both B19' and NiTi2 phases, which can impede martensitic transformation, are incorporated within the NiTi matrix. Particularly, additional phase transformation from R-phase to B19' observed in specimens annealed at 400 and 450℃ significantly contributes to the improvement in strain recovery rates. Additionally, the results regarding the Cu element content indicate that when the total content of Ni and Cu is below 49.6 at.%, the precipitation of fine B19' and NiTi2 phases within the matrix can greatly influence the transformation enthalpy and temperature range, resulting in relatively lower strain recovery rates in NiTi alloys with a small amount of Cu element produced in this study.

난백 의 열감수성 에 관한 연구 I. 가열온도와 시간, pH 및 NaCl농도가 난백의 열감수성에 미치는 영향 (Studies on Heat Sensitivity of Egg Albumen I. Effects of Heating Time and Temperature, pH and NaCl Concentration on Heat Sensitivity of Egg Albumen)

  • 유익종
    • 한국가금학회지
    • /
    • 제15권1호
    • /
    • pp.39-44
    • /
    • 1988
  • 난백의 가열처리 시 온도와 시간, 수소이온농도 및 NaCl농도가 난백의 열감수성에 미치는 영향을 기포성과 탁도를 중심으로 검토하였다. $55^{\circ}C$ 이하의 온도에서 난백을 가열할 경우에는 기포성과 탁도가 서서히 떨어졌으나 $60^{\circ}C$ 이상의 온도에서는 급격히 떨어져 $60^{\circ}C$에서 13분간 및 $65^{\circ}C$에서 5분간의 가열처리로 불투명해졌다. $60^{\circ}C$, 5작란피 가열처리로 pH 7 이하에서는 탁도가 현저히 증가하였으며 pH 4 부근에서는 기포력이 크게 저하하였다. 기포안정성은 가열처리에 의해 알카리영역에서 다소 저하하였다. NaCl 0.3M 첨가수준까지는 탁도가 저하하였으나 그 이상 첨가로 점차 증가하였으며 열처리 시에는 NaCl의 첨가가 탁도에 큰 영향을 미치지 않았다. $60^{\circ}C$. 5분간의 가열처리 전후 NaCl의 첨가에 의해 기포력에는 큰 변화가 없었으나 0.2M 이상 첨가 시 기포안정성은 저하하였다.

  • PDF

구리의 내식성에 미치는 어닐링 열처리의 영향 (Effect of Annealing Heat Treatment to Corrosion Resistance of a Copper)

  • 김진경;문경만;이진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.654-661
    • /
    • 2005
  • Copper is a well known alloying element that is used to improve the resistance to general corrosion of stainless steel And also Cu cation have the anti-fouling effect to inhibit adhesion of the marine algae and shellfish to the surface of heat exchanger cooling pipe or outside wall of the ship, Therefore there are some anti-fouling methods such as anti-fouling Paint mixed with copper oxide or MGPS(Marine Growth Preventing System) by using Cu cation dissolved to the sea wather solution. Cu cation can be dissolved spontaneously by galvanic current due to Potential difference between Cu and cooling pipe of heat exchanger with Ti material, which may be one of the anti-fouling designs. In this study the effect of annealing heat treatment to galvanic current and Polarization behavior was investigated with a electrochemical points of view such as measurement of corrosion Potential, anodic polarization curve. cyclic voltammetric curve, galvanic current etc The grain size of the surface in annealed at $700^{\circ}C$ was the smallest than that of other annealing temperatures. and also the corrosion Potential showed more positive potential than other annealing temperatures. The galvanic current between Ti and Cu with annealed at $700^{\circ}C$ was the largest value in the case of static condition. However its value in the case of flow condition was the smallest than the other temperatures. Therefore in order to increase anti-fouling effect by Cu cation, the optimum annealing temperature in static condition of sea water is $700^{\circ}C$, however non- heat treated specimen in the case of flow condition may be desirable.