• Title/Summary/Keyword: heat transformation

Search Result 584, Processing Time 0.024 seconds

Effects of C, Mo and Cr on Hardenability and Mechanical Properties of Boron-Bearing Steels (보론강의 경화능과 인장 특성에 미치는C, Mo, Cr의 영향)

  • Yim, H.S.;Jung, W.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.241-247
    • /
    • 2013
  • Hardenability and mechanical properties of boron-bearing steels containing C, Mo and Cr were investigated in this study. Using quench dilatometer, the steel specimens were cooled down to room temperature at different cooling rates to construct continuous cooling transformation diagrams and then the transformation products from austenite were examined. A critical cooling rate was introduced as an index to quantitatively evaluate the hardenability. The C addition to boron-bearing steels did not significantly affect hardenability compared to boron-free steels although it increases the hardenability. With the same content, the Mo addition largely increased the hardenability of boron-bearing steels than the Cr addition because it decreased both the transformation start and finish temperatures at low cooling rates. In particular, the Mo addition completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, whereas the Cr addition nearly suppressed it at the cooling rates above $3^{\circ}C/s$.

Quantitative analysis of Precipitate Using Transformation in Nb Added Low Carbon Steels (Nb 첨가 저합금강의 상변태를 이용한 석출물 정량분석)

  • Kang, H.C.;Lee, S.H.;Kim, N.S.;Lee, K.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2003
  • In Nb, V and Ti added steels, carbo-nitrides are formed due to their strong interaction with C and N. The formation of carbo-nitrides has an important role to control the microstructure as well as mechanical properties by grain size refinement and precipitation hardening. However, the quantitative analysis of distribution of precipitates and the effect of precipitates on the phase transformation and mechanical properties are still far from satisfactory. In this study, the quantitative analysis of precipitates in austenite was investigated using the fact that the formation of precipitates in Nb, V and Ti added steels accelerates austenite/ferrite transformation. The formation of precipitates was controlled by adjusting holding temperature and time in austenite region, transformed Volume fractions were measured by dilatometer during slow cooling, Iso-precipitation kinetics were determined by comparing 5% and 50% volumes transformed at various conditions respectively. The result was compared with the calculated.

The Fabrication and Evaluation of SMA Ribbons for Micro Actuator Application (마이크로 엑츄에이터용 형상기억 리본 제조 및 제특성 평가)

  • 이영수;장우양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.554-554
    • /
    • 2000
  • To improve mechanical properties of Cu-Al-Ni alloy by the grain refinement, Cu-Al-Ni SMA ribbons were fabricated by melt spinning apparatus. The variations of microstructure, mechanical properties and transformation characteristics with the condition of rapid solidification and annealing time-temperature were investigated in Cu-Al-Ni SMA ribbons. The ribbons fabricated by melt spinning obtained around 1.5nm in width and 50-60${\mu}{\textrm}{m}$ in thickness. With increasing wheel speed in order of 10m/s, 15m/s, 20m/s, 30m/s and 3m/s, the grain size was decreased in order of 10${\mu}{\textrm}{m}$, 6.25${\mu}{\textrm}{m}$, 5.5${\mu}{\textrm}{m}$, 3${\mu}{\textrm}{m}$ and 3${\mu}{\textrm}{m}$. $M_{s}$ and $A_{s}$ temperature were decreased with decreasing grain size. By X-ray diffraction test, ordered $\beta$$_1$ phase was observed in all the SMA ribbons and the volume friction of it was increased with increasing wheel speed. With increasing wheel speed, strain was increased from 4.2% to 5.8% and fracture mode has changed from mixture of intergranular and dimple fracture to mixture of fiber structure and dimple fracture. The grain size of ribbon heat-treated at $600^{\circ}C$ was increased with increasing time. In the heat-treated ribbons at 55$0^{\circ}C$, ${\gamma}$$_2$ phases were observed.d.d.

  • PDF

Prediction of Phase Transformation of Boron Steel Sheet during Hot Press Forming using Material Properties Modeler and DEFORMTM-HT (보론 강판의 핫 프레스 포밍 공정 시 재료 물성 모델러와 DEFORMTM-HT를 활용한 상 변태 예측)

  • Kang, K.P.;Lee, K.H.;Kim, Y.S.;Ji, M.W.;Suh, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.249-256
    • /
    • 2008
  • Combined phase transformation and heat transfer was considered on the simulation of hot press forming process, using material properties modeler, $JMatPro^{(R)}$ and a finite element package, $DEFORM^{TM}$-HT. In order to obtain high temperature mechanical properties and flow curves for different phases, a material properties modeler, $JMatPro^{(R)}$ was used, avoiding expensive and extensive high temperature materials tests. The results successfully show that the strength of hot press forming parts may exhibit different strength in the same parts, depending on the contact of blank with tooling. It was also shown effectively that the strength of the parts can be controlled by designing appropriate cooling paths and coolants. This was shown in terms of different heat convection coefficient in the calculation. Overall, current combination of software was shown to be an effective tool for the tool and process design of hot forming process, although the material modeler needs to be additionally verified by an appropriate set of high temperature materials test.

Phase Transformation Properties of Cu/TiO2 Photocatalyst Powders Fabricated by Mechanical Alloying (기계적 합금화법으로 제조된 Cu/TiO2 촉매용 분말의 상변화 특성)

  • 안인섭;배승열;이영란;고봉석
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2002
  • In order to obtain the nano size $10wt%Cu-TiO_2$composite powders by mechanical alloying method for useful composite catalysis, the effects of mechanical alloying time on the formationof $10wt%Cu-TiO_2$ composite powders were analyzed. The phase transformation behaviors were experimented as the heat treating temperature increased. Homogeneous 10wt% Cu-rutile type $TiO_2$composite powders were synthesized in 40 hours by mechanical alloying. After 60 hours mechanical alloying 50 nm size $TiO_2$powders were obtained. Both the phase of mechanically alloyed 10 wt% $Cu-TiO_2$ and pure $TiO_2$ powders were not transformed to anatase after annealing at the temperature range between 350 to 500 $^{\circ}C$. The intermetallic compound of $Cu_2Ti_4$O was formed after 10 hours mechanical alloying, however it could be considered that this intemetallic phase dose not prevent the transformation of rutile $TiO_2$ to the anatase phase after heat treatment at the temperature between 350 and $550^{\circ}C$.

Microstructure and Transformation Characteristics with Cooling Rate in Cu-Al-Ni Based SMA Ribbons Fabricated by Melt-Spinning (Cu-Al-Ni계 형상기억리본 제조시 냉각속도에 따른 미세조직 및 변태특성)

  • Lee, Y.S.;Jang, W.Y.;Lee, E.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2000
  • The microstructural change and transformation characteristics with cooling rate i.e. wheel speed were investigated in 82.8wt%Cu-12.8wt%Al-4.3wt%Ni SMA ribbons fabricated by melt-spinning. The thickness and width of ribbon were decreased with increasing wheel speed, while the uniformity of it was improved. At same wheel speed, the grain size of the contact surface of ribbon was smaller than that of free surface. The mean grain size was decreased with increasing wheel speed, resulted in obtaining grains with $3{\mu}m$ in mean diameter in the wheel speed of 30 m/s. However, micro-voids and cracks at grain boundary could be observed at higher wheel speed. $M_s$ and $A_s$ temperatures were decreased, and $M_s{\sim}M_f$ and $A_s{\sim}A_f$ temperature ranges were broadened with increasing wheel speed. All the ribbons were retained the ordered $D0_3$ due to rapid cooling, the volume fraction of it was increased with increasing wheel speed.

  • PDF

Effect of Reverse Transformation on Mechanical Behavior of Low Carbon High Manganese Steels (저탄소 고망간강의 기계적 거동에 미치는 역변태 처리의 영향)

  • Hong, H.;Lee, O.Y.;Lee, K.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.278-287
    • /
    • 1997
  • The TRIP behavior in tensile deformation of retained austenite formed by reverse transformation treatment in 0.15%C-6%Mn-(Ti, Nb) steels has been investigated. The shape of retained austenite was almost a fine lath type with $0.1{\sim}0.3{\mu}m$ width and the two distinctly different transformation sequences of retained austenite, i) retained austenite${\rightarrow}$martensite and ii) retained austenite${\rightarrow}$deformation twin${\rightarrow}$martensite were revealed. The strength-elongation combination was increased with increasing the holdig time at low temperatures ($625^{\circ}C$) but decreased abruptly with increasing holding time at high temperatures ($675^{\circ}C$), owing to the lowering of ductility. The strength-elongation combination and TRIP effect was lower in tensile deformation in the range of $100{\sim}250^{\circ}C$ than room temperature. The tensile strengh and elongation of a reverse transformed steels with addition of Ti or Nb was 93kg/, 40% respectively, which is higher over 10% of strength without ductility loss than in 0.15%C-6%Mn steels.

  • PDF

Effect of Mn Addition on the Microstructural Changes and Mechanical Properties of C-Mn TRIP Steels (C-Mn TRIP강의 미세조직 변화와 기계적 성질에 미치는 Mn 첨가의 영향)

  • Hong, H.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.205-210
    • /
    • 2003
  • Various types of high strength steel sheets were usually used for improving the automobile safety and fuel efficiency by reducing the vehicle weight. The present study aimed to develop the TRIP (transformation induced plasticity) aided high-strength low carbon steel sheets by using a reverse transformation process. The 0.1C-4~8Mn steels were reverse-transformed by slow heating to intercritical temperature region and then furnace cooled to the room temperature. Granular type retained austenite was observed in 4Mn steel and lath type retained austenite was also observed in 6~8Mn steel. The results show that the 6Mn steel under reverse transformed at $625^{\circ}C$ for 6 hrs has maximum elongation up to 39%. The optimum strength-elongation combination was 3,888 ($kg/mm^2{\times}%$) when the 8Mn steel was reverse transformed at $625^{\circ}C$ for 12 h.

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

The Mechanical Properties and Characteristics of TRIP-assisted Multiphase Steels in High Toughness for Autombile Safety (자동차의 안정성을 고려한 고인성 충격흡수 강재로서 TRIP 형 복합상강의 기계적 성질 및 그 특성)

  • 이기열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • As the steel plates used for automobile safety the TRIP-assisted multiphase steels are being introduced to automobile industry with respect to their remarkable mechanical properties for the combination of high strength and large elongation. This multiphase structure is generated by two stage heat treatment (intercritical annealing & isothermal treatment) The metastable retained austenite can be transformed to martensite when plastically deformed which results in TRIP effect. Actually the microstructure of TRIP-assisted steels consist of a fine dispersite. There present discussion deals with bainite reaction kinetics of austenite in the process o f two stage heat treatment. In relation to bainite transformation the characteristics of bainite reaction is found to be influenced by the bainite tempering temperature and also by the relative rate in which carbides precipitate within residual austenite.

  • PDF