• Title/Summary/Keyword: heat transfer tube bank module

Search Result 4, Processing Time 0.022 seconds

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling (배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.

Heat Transfer Characteristics of Heat Exchange Module for a Water Tube Type Modular Boiler (모듈형 수관식 보일러를 위한 열교환 모듈의 열전달 특성)

  • Ahn, Joon;Kim, Jong-Jin;Kang, Sae-Byul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.265-270
    • /
    • 2012
  • A finned tube type heat exchange module has been proposed for a multi-burner water tube boiler. Fin density and length increase in streamwise direction to equalize the evaporation for each module, which makes it difficult to apply conventional bulk design procedure. The design program has been improved by updating data for every row of tubes along the flow. A numerical simulation has been also conducted to evaluate the effect of inlet conditions and validated with experiment. The heat transfer of the first row has been underpredicted by the conventional Zhukauskas correlation, since the acceleration of the flow due to the blockage is not fully inflected. The fin tip temperature is also underpredicted by Bessel solution, because of the interaction with neighboring fins.

Heat Transfer Module for Multi-Burner Water Tube Boiler: 0.5 t/h Class Model Simulation (다중버너 수관식 보일러를 위한 전열모듈의 열전달 특성: 0.5 t/h급 모형 수치해석)

  • Ahn, Joon;Kim, Jong-Jin;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.528-533
    • /
    • 2007
  • A finned tube type heat transfer module has been proposed for a multi-burner water tube boiler. Fins change their geometry along the streamwise direction to maximize the performance, which makes it difficult to apply conventional bulk analysis. The design program has been improved by updating data for every row of tubes along the flow. A numerical simulation has been also performed to evaluate the effect of inlet conditions and validated with experiment. The heat transfer of the first row has been underpredicted by the conventional Zhukauskas correlation, where the acceleration of the flow due to the blockage is not fully inflected. The fin tip temperature is also underpredicted by Bessel solution, because of the interaction with neighboring fins.

  • PDF

Heat Transfer Characteristics of 2 t/h-Class Modular Water-Tube-Type Boiler (모듈형 2 t/h급 수관식 보일러의 열전달 특성)

  • Ahn, Joon;Hwang, Sang-Soon;Kim, Jong-Jin;Kang, Sae-Byul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1127-1133
    • /
    • 2012
  • A finned-tube-type evaporator module has been proposed for a 2 t/h-class water-tube-type industrial boiler with multiple burners. The geometry of the fins was changed at each module to equalize the evaporation. The modules were designed by considering the energy balance at each row rather than by following a conventional bulk design procedure. The designed module was built into a 2 t/h-class water-tube-type boiler, and its performance was tested. A numerical simulation was also conducted to evaluate the two- or three-dimensional effects of factors such as the inlet conditions. The numerical simulation also included the conjugate heat transfer problem to predict the fin tip temperature. The heat transfer coefficient with fins is lower than that obtained from the empirical correlation of a bare tube. The fin tip temperature from CFD is higher than that from the analytical solution.