• Title/Summary/Keyword: heat storage

Search Result 1,513, Processing Time 0.028 seconds

Floor Heating Characteristics of Latent Heat Storage - Bioceramic Ondol - Focused on Theoretical Analysis - (잠열 축열 - 바이오 세라믹 온돌의 난방 특성 - 이론적 분석을 중심으로 -)

  • 송현갑;유영선
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.213-222
    • /
    • 1995
  • Korean traditional Ondol with the sensible heat storage medium has been for a long time used as residential heating system, in these days the concrete Ondol without the heat storage medium was realized as the heating system in the private houses and the apartments. This floor heating system is good for our health. But the concrete Ondol is not desirable for the energy saving and for the maintenance of comfortable room temperature because the heat storage medium is not employed in the concrete Ondol. And as the hot water circulating pipes ate buried under the the concrete floor, the concrete Ondol system has some kind of problems to be improved. Therefore the new type of Ondol system was developed in this study. And the new Ondol was consisted of latent heat storage material as heat storage medium with a great heat capacity and bioceramics as medium to maintain comfortable room temperature. In this study, the heat transfer characteristics of latent heat storage-bioceramic Ondol was analyzed theoretically.

  • PDF

A Study on the Heat Storage Characteristics of a Latent Heat Storage Tank with Shell and Tube Type (셀-튜브형 잠열축열조의 축열특성에 관한 연구)

  • 권영만;김경우;모정하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.745-754
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat storage tank consists of cylindrical capsules with a staggered tube bank. The effects of flow rates and initial temperature differences on the melting time and heat storage rates are examined. It is found that the melting time decreases with increase of the flow rates and initial temperature differences. Results also show that the time-averaged overall heat transfer coefficients increase in proportion to the increase of flow rates and initial temperature differences.

  • PDF

Study on Heat Storage and Transportation System for Recovering Non-using Low-temperature Heat (폐열회수 증대를 위한 열운송 축열 시스템 특성 연구)

  • Oh, Changyong;Im, Hongseop;Kim, Insu
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • Non-used waste heat has recently been paid special attention due to several global warming regulation and energy cost rising. In this study, therefore, thermal energy storage system which uses a solid type heat media has been investigated about the possibility of heat accumulation and heat release for thermal energy storage system. 35kWh of bench-scale thermal storage system was used to investigate the characteristics of the solid type heat media. From the result, it is shown that a solid type heat media should be divided to supply constant heat to the customers' side. It is also shown the flow direction should be considered to reduce temperature difference between top and bottom sides in the thermal storage system.

Heat transfer characteristics of Triple-Tube Type Latent Heat Storage Tank (3중관 튜브형 잠열 축열조에서의 열전달 특성 연구)

  • Lee, W.K.;Han, G.Y.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.71-82
    • /
    • 2001
  • The heat transfer experiment in a latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of triple - tube type ; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and inside tube for hot water recovery. The heat storage tank has the dimension of 60 cm long and 34 cm outside diameter. Paraffin wax(m.p = 55.4C) and sodium acetate trihydrate(m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage$(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

Heat transfer characteristics of Immersed Coil Type Latent Heat Storage Tank (내부코일형 잠열 축열조에서의 열전달 특성 연구)

  • Lee, W.K.;Han, G.Y.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.83-91
    • /
    • 2001
  • The heat transfer experiment in a pilot scale latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of three parts; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and immersed coil in the PCM vessel for hot water recovery. The heat storage tank has the dimension of 115 cm in height and 32 cm outside diameter. Paraffin wax (m.p = 55.4C) and sodium acetate trihydrate (m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage $(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

Heat Storage in a packed Bed (충전층내에서 축열에 따른 열전달)

  • Choi, Kyung-Jin;Ro, Sung-Tack
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1978
  • An experiment has been performed of find a temperature distribution of the circulating fluid in a packed bed thermal storage system when the inlet fluid temperature is constant. The thermal storage system is a specific-heat type in which the circulating fluid, hot air, exchanges heat directly with the heat storage materials, glass balls, in a heat storage bin. An empirical equation which includes two dimensionless variables $t^*\;and\;T_f^*$, is obtained. Also, heat storage efficiency and heat storage capacity are calculated from this equation, The heat transfer coefficient calculated by the suggested equation was compared with the value determined by the existing empirical equation.

  • PDF

A Study on the Heat Release Characteristics of Gel Type Micro Size Latent Heat Storage Material Slurry with Direct Contact Heat Exchange Method (겔 상태의 미세 잠열 축열재 혼합수의 기액직접접촉식 열교환법에 의한 방열 특성)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.618-623
    • /
    • 2004
  • This paper has dealt with the heat storage characteristics of gel type micro size latent heat storage material slurry. The heat release operation to the gel type micro size latent heat storage material slurry was carried out using hot air bubbles by direct contact heat exchange. This experiment was carried out using phase change material of n-paraffin so the heat release amount is higher than cold water system. The parameters of this experiment were concentration of latent heat phase change material, height of heat release bath and inlet velocity of hot air. The main results obtained are as follows : (1) The effect of concentration of latent heat phase change material dispersed with water is very affective to the direct contact heat exchange between hot air and gel type micro size latent heat storage material slurry. (2) It is clarified that the most effective concentration of latent heat phase change material dispersed with water exists around 20mass% at this type of direct heat exchange model experiment.

Performance Simulation and Analysis of the Solar Thermal Storage System Using Heat Pipe (히트파이프를 사용한 태양열 축열시스템의 성능모사 및 해석)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kim, Jong-Kyu;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.80-85
    • /
    • 2009
  • Mathematical modeling and performance simulation results were shown for the solar thermal storage system which used heat pipe. The thermal storage system was composed of thermal storage tank and charging/discharging heat exchanger with one by the heat pipes. Heat pipe heat exchanger was attached to system, and could carry out charging and discharging to thermal storage tank at the same time. Height of the thermal storage tank was 600 mm, and that of the charging/discharging heat exchanger was 400 mm. Length of the heat pipe was the same as the total height of thermal storage system, and outer and inner diameter were 25.4 mm(O.D.) and 21.4 mm(I.D.) respectively. Diameter of the circular was 43 mm(O.D.), and fin geometries were considered as the design parameters. High temperature phase change material(PCM), $KNO_3$ and low temperature PCM, $LINO_3$ were charged to storage tank to adjust working temperature. Total size of thermal storage system able to get heat capacity more than 500 kW was calculated and the results were shown in this study. Number of heat pipe was required more than maximum 500, and total length of thermal storage system was calculated to the more than maximum 3 m at various condition.

  • PDF

Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System (잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구)

  • Ryu, S.N.;Han, G.Y.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

Thermal Energy Storage and Release Characteristics of the Soil in the Greenhouse Equipped with Heat Pump and Latent Heat Storage System (열펌프-잠열축열 시스템 온실에서 토양의 열저장 및 방열 특성)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In order to obtain the information of bio-environment control, the thermal characteristics of soil in the greenhouse heated by the heat pump and latent heat storage system were experimentally analyzed. The experimental systems were composed of the greenhouse with a heat pump and a latent heat storage system (system I), the greenhouse with a heat pump (system II), the greenhouse with a latent heat storage system (system III), and the greenhouse without auxiliary heating system (system IV). The thermal characteristics experimentally analyzed in each system were temperature of soil layers, soil heat storage and release, soil heat capacity and soil heat storage ratio. The results could be summarized as follows. 1. Time to reach the highest temperature at 20cm deep in soil layers of the crop routs in case of system I was shown to be delayed by 6 hours in comparison to the time of the highest temperature at the soil surface. 2. In the clear winter days, the stored heat capacity values fur the system I and the system II were shown to be 22.3% and 11.0% higher than the released heat capacity respectively, and the stored heat capacity values for the system III and the system IV were shown to be 6.2% and 29.6% lower than the released heat capacity respectively This confirms that the system I provided the best heat storage effect. j. The heat quantity values stored or released were shown to be highest at 5 cm depth of soil layers. And it was reduced with increasing of depth of soil layers until 20 cm and was not changed under the soil layer of 20 cm depth. 4. The heat absorption rates of soil, the ratio between supplied and stored heat energy, fur both the system I and system II were lower than 23%.