• Title/Summary/Keyword: heat storage

Search Result 1,508, Processing Time 0.026 seconds

A Numerical Simulation of Heat and Fluid Flow for Predicting the Effect of Passage Arrangement in Automotive Heat Battery (자동차용 열전지에서 유로배열 효과 예측을 위한 열유동 수치묘사)

  • Lee, K.S.;Kwon, J.W.;Baek, C.I.;Song, Y.K.;Han, C.S.;Kim, D.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.64-73
    • /
    • 1995
  • A numerical simulation of heat and fluid flow for predicting the effect of passage arrangement in automotive heat battery has been performed. The system is assumed to be a two-dimensional laminar flow and isothermal boundary is applied to the surface of the latent heat storage vessel. In the case of ideal heat battery the flow rate into each flow passage is evenly distributed. The various models are considered in the view of pressure drop and bulk temperature. The effects on the efficiency of the heat battery are examined by varying geometrical factors such as flow passage clearance, length of a inlet and outlet tank and the length of a latent heat storage vessel. The flow clearance is a very important -factor on the efficiency of a heat battery. As the flow passage clearance becomes narrow, the flow distribution becomes uniform and the bulk temperature increases, however the pressure drop is large. Therefore, optimal flow passage clearance has to be chosen. The present work can be used in optimizing heat battery efficiency.

  • PDF

Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products (식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성)

  • Song, Hyun-Kap;Ro, Jeong-Geun;Moon, Young-Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.

The Performance Characteristics of Heat Pump Using the Refrigerant Subcooling (냉매 과냉각을 이용한 열펌프 시스템의 성능 특성)

  • Roh, Geon-Sang;Son, Chan-Ghyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.413-421
    • /
    • 2007
  • In this paper, the performance characteristics of heat pump system using a new refrigerant subcooling system designed for the study, are introduced. The new heat pump system have the ice storage tank at the outlet of condenser. The experimental apparatus is a well-instrumented water/water heat pump which consisted of working fluid loop, coolant loop, and ice storage tank. The experiment parameters of subcooling ranged as the evaporating temperature from $-5^{\circ}C$ to $8^{\circ}C$, the condensing temperature from $30^{\circ}C$ to $35^{\circ}C$. The test of the ice storage was carried out at evaporating temperature of $-10^{\circ}C$ and the ice storage mode is Ice-On-Coil type. The working fluid was R-22 and the storage materials were city-water. The test results obtained were as follows; The refrigerant mass flow rate and compressor shaft power were unchanged by the degrees of subcooling, that is, they were independent of degrees of subcooling. The cooling capacity of the new heat pump system increase as the evaporating temperature and subcooling degrees increase and is higher by $25{\sim}30%$, compared to the normal heat pump system. The COP of the new heat pump system increases as the degrees of subcooling and evaporating temperature increase and is higher by 28% than that of the normal heat pump system.

Effects of Postharvest Heat Treatment on Alleviation Chilling Injury and Improvement Storability of Oriental Melon (수확 후 고온처리가 참외의 저온장해 완화와 저장성 향상에 미치는 영향)

  • Kang Ho-Min;Park Kuen-Woo;Kim Il Sop
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Oriental melons hold at $38^{\circ}C$ for 48 hours before storage increased their soluble solid, titratable acidity, vitamin C contents and ${\alpha}$-tocopherol activity. These heat treated oriental melons maintained lower production of carbon dioxide, ethylene and acetaldehyde and loss of fresh weight than untreated them, called control, during $3^{\circ}C$ MA storage. After 39 days in storage, the last day of storage, visual quality and internal quality, such as firmness, soluble solid, titratable acidity, vitamin C and ${\alpha}$-tocopherol activity, showed higher in heat treated oriental melons. Especially, Ion leakage of flesh, index of chilling injury, increased remarkably in control, so that heat treatment had to alleviate chilling injury in oriental melon. Moreover, while Alternaria rot was shown in control plot after 25 days in $3^{\circ}C$ MA storage, oriental melons treated heat were not appeared any decomposition after 39 days in $3^{\circ}C$ MA storage. As storage life of oriental melon was calculated by regression equation between visual quality and days in storage, that was longer 8 days in heat treated than control. Consequently, heat treatment that was mild, $38^{\circ}C$ and long period, 48 hours, executed before storage, sterilized surface alleviated chilling injury and lengthened storage life in oriental melons.

A study of the simulation of thermal distribution in an aquifer thermal energy storage utilization model (대수층 축열 에너지 활용 모델의 온도 분포 시뮬레이션 연구)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.697-700
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop an ATES system which has certain hydrogeological characteristics, understanding of the thermo hydraulic processes of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermo hydraulic transfer for heat storage is simulated using FEFLOW according to two sets of pumping and waste water reinjection scenarios of heat pump operation in a two layered confined aquifer. In the first set of model, the movement of the thermal front and groundwater level are simulated by changing the locations of injection and pumping well in seasonal cycle. However, in the second set of model the simulation is performed in the state of fixing the locations of pumping and injection well. After 365 days simulation period, the temperature distribution is dominated by injected water temperature and the distance from injection well. The small temperature change is appears on the surface compared to other slices of depth because the first layer has very low porosity and the transfer of thermal energy are sensitive at the porosity of each layer. The groundwater levels and temperature changes in injection and pumping wells are monitored to validate the effectiveness of the used heat pump operation method and the thermal interference between wells is analyzed.

  • PDF

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.39-47
    • /
    • 1996
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. And arrangement of heating pad play an important role in thermal flow and thermal storage efficiency. In this experiments, number of heating pad is ranged from three, five and nine, and when there is no change on number of heating pad, arrangements are two types of concentration-type and dispersion-type. Strong entrainment take place in the case of concentration-type of heating pad, and rapid temperature rise(${\Delta}{\doteqdot}1.6{\sim}3.2^{\circ}C$) in the tank is obtainable on the concentration-type than dispersion-type. In the constant number of heating pad, the concentration-type has the higher efficiency with about $5{\sim}6%$ than the dispersion-type Therefore, concentration-type of heating pad is an efficient design in constant number of heating pad.

  • PDF

Determination of Boil-Off gas Ratio for the Design of Underground LNG Storage System in Rock Cavern (암반동굴식 지하 LNG 저장 시스템 설계를 위한 기화율의 산정)

  • Chung, So-Keul;Lee, Hee-Suk;Jeong, Woo-Cheol;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.56-65
    • /
    • 2007
  • A new underground LNG storage concept in the rock mass has been developed by combining underground cavern construction and new ice-ring harrier technologies with the conventional cryogenic insulation system. Technical feasibility of the storage system has been verified through construction and operation of the pilot storage cavern and a full-scale project is expected to start in the near future. One of the most important issues in the LNG storage system is the operational efficiency of the storage to minimize heat loss during a long period of operation due to the cryogenic heat transfer. This paper presents several important results of heat transfer and coupled hydro-thermal analyses by a finite element code Temp/W and Seep/W. A series of heat transfer analyses for full-scale caverns were performed to determine design parameters such as boil-off gas ratio (BOR), insulation thickness and pillar width. The result of the coupled hydro-mechanical analysis showed that BOR for underground storage system remains at about 0.04 %/day during the early stage of the operation. This value could be even much lower when the discontinuities in the rock masses are taken into consideration.

Physicochemical Properties of Korean Ginseng (Panax ginseng, C.A. Meyer) Root Polysaccharides. -Change of physicochemical properties of the starch during storage and heat treatment- (인삼다당류의 이화학적 특성에 관한 연구 -인삼저장가공중 전분의 이화학적 특성변화-)

  • 조재호;오성기
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.270-284
    • /
    • 1985
  • In order to investigate the change of physicochemical properties of ginseng root starch during storage and heat treatment, the roots were stored for 15 days at 5 $^{\circ}C$, 15 $^{\circ}C$, 3$0^{\circ}C$ and 45$^{\circ}C$, and heated for 15 hours at 6$0^{\circ}C$, 7$0^{\circ}C$, 8$0^{\circ}C$, 9$0^{\circ}C$, respectively. The starch content was decreased from about 40% to 23-26% and sucrose content was increased from 4% to 12-16% during storage for 15 days at 5-45$^{\circ}C$. Maltose, which was not detected in fresh samples, was increased up to 8.5% during storage or heat treatment. Granular size of the starch was decreased and some of the granules were broken during storage. Amylose content in the starch was decreased from 33% to 20%, and blue value and alkali number of the starch were increased slightly, and solubility and swelling power of the starch were decreased during storage. 3 The higher storage temperature and the longer storage time, the starch was more susceptible to gelatinize, and the viscosity of the starch was lowered with the susceptibility of gelatinization. The susceptibility of degradation of the starch by the amylase was increased and amylolytic activities in ginseng root were, also, increased during storage.

  • PDF

Thermal properties of latent heat storage microcapsule-water slurry

  • Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.807-812
    • /
    • 2015
  • A microcapsule water slurry is a latent heat-storage material having a low melting point. In this study, the thermal properties of a microcapsule water slurry are measured. The physical properties of the test microcapsule water slurry, i.e., thermal conductivity, specific heat, latent heat, and density, are measured, and the results are discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). It is clarified that Eucken's equation can be applied to the estimation of the thermal conductivity of the microcapsule water slurry. Useful correlation equations of the thermal properties of the microcapsule water slurry are proposed in terms of the temperature and concentration ratio of the microcapsule water slurry constituents.

Analysis on Economic Feasibility of Electric Night Storage Heat Pump as a Substitution of a Heater (심야전기보일러 대체 Heat Pump의 경제성 분석)

  • JUNG, H.;JO, J.Y.;Lee, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.119-124
    • /
    • 2011
  • Electric night storage heater was introduced and disseminated for power grid balancing and efficient management of power generation facility. But fuel cost for heating has been increased rapidly while the cost of electricity increased slightly. This abnormal rate system caused peak load in winter at last. To solve this problem, application of an air source heat pump was suggested. In the study, the effect of replacing night heater by heat pump and the economics were analysed. In addition the expectation of prospect of heat pump penetration was simulated based on surveyed and investigated data. As a result, fund supporting as well as institutional backing was needed for effective propagation and return of investment.