• Title/Summary/Keyword: heat reforming

Search Result 138, Processing Time 0.031 seconds

Effect of discontinuous mixture gas feeding on effective hydrogen production in a steam reformer frommethane (효율적 수소 생산을 위한 메탄 수증기 개질 반응기에서의 불연속적 가스 유입의 영향)

  • Lee, Shin-Ku;Park, Joon-Guen;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.25-28
    • /
    • 2008
  • Steam reforming reaction is a matured technology to get hydrogen from hydrocarbon fuels compared with other reforming reactions such as partial oxidation(POX), autothermal reforming(ATR). It is so endothermic that it needs heat source to activate the reaction. Due to the reaction characteristics, heat transfer limitation phenomena generally occur in the steam reformer. As one of new ideas, the effect of discontinuous gas feeding is investigated based on heat transfer characteristics. The new operating method is usually favorable at high GHSV region(i.e. over $10,000h^{-1}$). In order to numerically simulate the physical issues, numerical approach is adopted based on heterogeneous reaction model, two-equation model in energy equation, and other constitutive models in porous media.

  • PDF

GASIFICATION OF CARBONEOUS WASTES USING THE HIGH TEMPERATURE REFORMER

  • Lee, Dong-Jin
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.122-130
    • /
    • 2005
  • Gasification of carbonaceous wastes such as shredded tire, waste lubricating oil, plastics, and powdered coal initiates a single-stage reforming reactor(reformer) Without catalyst and a syngas burner. Syngas is combusted with $O_2$ gas in the syngas burner to produce $H_2O\;{and}\;CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevates the temperature of reactor above $1,200^{\circ}C$, and hydrogen gas fraction reaches 65% of the product gas output. Reactants and heat necessary for the reaction are provided through the syngas burner only. Neither $O_2$ gas nor steam is injected into the reforming reactor. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and the product syngas is recycled into syngas burner.

Study on hydrocarbon reforming using microchannel catalysts (마이크로 채널을 이용한 탄화수소 연료개질에 관한 연구)

  • Bae, Gyu-Jong;Park, Joon-Geun;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.33-36
    • /
    • 2007
  • Currently, many structured catalysts using microchannel are researched to apply to fuel reforming. In this paper, ceramic monolith and metal mesh as structured catalysts are investigated for catalytic autothermal reforming. When GHSV increases, each structured catalyst has better performances(hydrogen production, fuel conversion) than packed bed catalyst for autothermal reforming. The major causes seem to be the elevated heat and mass transfer, gas phase reaction and redistribution of packed bed due to high pressure drop.

  • PDF

Study on the development of small-scale hydrogen production unit using steam reforming of natural gas (천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구)

  • Seo, Dong-Joo;Chue, Kuck-Tack;Jung, Un-Ho;Park, Sang-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

A Personal Reformer(PR) for your Fuel cell system (연료전지를 위한 개인용 개질기)

  • Kim Hyeon Yeong
    • 한국전기화학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.103-108
    • /
    • 2004
  • The present paper relates to an apparatus in which all carbonaceous material such as coal, oil, plastics and any substance having carbon atoms as part of its constituents are reformed(gasified) into syngas at temperature above $1,200^{\circ}C$(KR patent No.0391121, and PCT/KR2001/01717 and PCT/KR2004/001020). It comprises a single-stage reforming reactor without catalyst and a syngas burner as shown in Fig.2. syngas is combusted with $O_2$ gas in the syngas bunter to produce $M_2O$ and $CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevate the temperature of reactor above $1,200^{\circ}C$, and reaction products reduce carbonaceous material down to CO and $H_2$ gases. Reactants and heat necessary for the reaction are provided through the syngas burner only, Neither $O_2$ gas nor steam are injected into the reforming reactor. Reformer is made of ceramic inner lining and sst outer casing. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and a portion of the product syngas is recycled into syngas burner. The present reformer as shown in Fig.2 is suitable to gasify carbonaceous wastes without secondary pollutants formed from oxidation. Further, it can be miniaturized to accompany a fuel cell system as shown in Fig.3 The output syngas may be used to drive a fuel cell and a portion of electrical power generated in a fuel cell is used to heat a compact reformer up to $1,200^{\circ}C$ so that gas/liquid fossil fuel can efficiently reformed into syngas. The fuel cell serves as syngas burner in Fig.2. The reformation reaction is sustained through recycling a portion of product syngas into a fuel cell and using a portion of electric power generated to heat the reformer for continuous operation. Such reforming reactor may be miniaturized into a size of PC, then you have a Personal Reformer(PR).

  • PDF

Effect of various boundary conditions and geometries in steam reformer using numerical analysis (수치해석을 이용한 수증기 개질 반응기의 다양한 경계조건 및 형상의 영향)

  • Park, Joon-Guen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.41-44
    • /
    • 2007
  • Steam reforming reaction of natural gas is an important process for fuelcell commercialization. In this paper, steam reforming reaction is studied by numerical method. Pseudo-homogeneous model is incorporated for chemical reactions and one medium approach is used to take into account thermally equilibrium phenomena between catalyst and bulk gas. The model is validated with our experimental results under the same operating conditions. Because performance of reformer has relation to heat flux from wall, heat flux profiles was investigated by using Nusselt number. Value of Nusselt number in steam reformer is larger than one in channel, which does not have chemical reaction because steam reforming reaction is an endothermic reaction. When the difference of Nusselt number at the front and the rear is larger, performance is improved.

  • PDF

Experimental study on operation of diesel autothermal reformer for SOFC system (SOFC 시스템용 디젤 자열개질기 운전을 위한 기초 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2015-2020
    • /
    • 2007
  • Diesel is an excellent candidate fuel for fuel cell applications due to its high hydrogen density and well-established infrastructure. But, it is hard to guarantee desirable performance of diesel reformer because diesel reforming has several problems such as sulfur poisoning of catalyst and carbon deposition. We have been focusing on diesel autothermal reforming(ATR) for substantial period. It is reported that ATR of diesel has several technical advantages such as relatively high efficiency and fuel conversion compared to steam reforming(SR) and partial oxidation(POX). In this paper, we investigate characteristics of diesel reforming under various ratios of reactants(oxygen to carbon ratio, steam to carbon ratio) for improvement of reforming performances(high reforming efficiency, high fuel conversion, low carbon deposition). We also exhibit calculated heat balance of autothermal reformer at each condition to help thermal management of SOFC system.

  • PDF

Heat and mass transfer characteristics in steam reforming reactor (수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구)

  • Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.340-343
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reform ins reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. In steam reforming reaction, heat transfer issue is so significant that geometrical configuration study is also conducted.

  • PDF

Characterization of Heat Reformed Naphtha Cracking Bottom Oil Extracts

  • Oh, Jong-Hyun;Lee, Jae-Young;Kang, Seok-Hwan;Rhee, Tai-Hyung;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.289-293
    • /
    • 2008
  • Naphtha Cracking Bottom (NCB) oil was heat reformed at various reforming temperature and time, and the volatile extracts were characterized including yields, molecular weight distributions, and representative compounds. The yield of extract increased as the increase of reforming temperature ($360{\sim}420^{\circ}C)$ and time (1~4 hr). Molecular weight of the as-received NCB oil was under 200, and those of extracts were distributed in the range of 100-250, and far smaller than those of precursor pitches of 380-550. Naphtalene-based compounds were more than 70% in the as-received NCB oil, and most of them were isomers of compounds bonding functional groups, such as methyl ($CH_{3^-}$) and ethyl ($C_2H_{5^-}$). When the as-received NCB oil was reformed at $360^{\circ}C$ for 1 hr, the most prominent compound was 1,2-Butadien, 3-phenyl- (24.57%), while naphthalene became main component again as increasing the reforming temperature.

Study on Methane Steam Reforming utilizing Concentrated Solar Energy -Part 1. In search of the best reaction condition for steam reforming of methane- (태양열을 이용한 메탄의 수증기 개질 반응기 연구 -Part 1. 수증기 개질 반응에서의 최적 반응 조건 탐색-)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.13-19
    • /
    • 2005
  • The reaction of steam reforming of methane with commercial catalysts was conducted for thermochemical heat storage. The reaction conditions were investigated for temperature range of 700 to $900\;^{\circ}C$ and steam to carbon mole ratios between 3.0 and 5.0. The reactor was made of stainless steel and it's dimension was 12 cm inside diameter and 6cm long. The effects of space velocity and reactants mole ratio and temperature on the methane conversion and CO selectivity were examined. Optimum reaction condition was determined. There was not a significant difference of methane conversion and CO selectivity compared to conventional reactor.