• Title/Summary/Keyword: heat recovery type

Search Result 155, Processing Time 0.04 seconds

A Comparison of Performance on the Orthogonal and Refraction Heat Exchanger Shape in Air Ventilation System (환기시스템의 굴절 및 평판형 열교환기 형상에 따른 성능비교)

  • Hyeon, Hyeong-Ho;Jeong, Byeong-Ho;Kim, Ji-won;Lee, Kang-yeon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.281-287
    • /
    • 2019
  • Application of heat recovery system applying air supply and cexhaust ventilation device essential in energy management system for the optimum ventilation system utilization and energy saving. This is a key element of infrastructure technology for high-efficiency energy buildings, because it can save heating and cooling energy in winter and summer. In this paper, heat transfer efficiency was simulated using paper, plastic, and aluminum materials that was examined to compare heat exchanger performance under uniform flow conditions. We tested heat transfer efficiengy according to the shape of two of that, one is orthogonal and the other is refraction shape. Based on the simulation results, it is expected to contribute to the production of high performance heat exchanger with heat transfer performance and pressure loss.

A Comparative Analysis of Energy Performance according to the Ventilation System in Apartment House (공동주택의 환기시스템별 에너지성능 비교 분석)

  • Kim, Gil-Tae;Chun, Chu-Young;Kim, Sun-Dong
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.215-220
    • /
    • 2015
  • The purpose of this study was to comparative analyses of energy performance in apartment houses adopted window frame-type natural ventilation, under-floor air distribution ventilation and heat recovery ventilation. As the object of energy simulation, the three type ventilation system with area of $84m^2$ was selected in apartment house. As a result, when the ECO2 simulation was performed, the 1st requirement quantity per annual were $159.9kWh/m^2yr$(CASE1, Natural Ventilation), $179.7kWh/m^2yr$(CASE2, Under-floor Air Distribution Ventilation) and $161.0kWh/m^2yr$(CASE3, Heat Recovery Ventilation).

The Deformation of Knitted Cotton Fabrics with/without Spandex During Laundering (스판덱스 혼합 면 편성물과 면 편성물의 세탁에 따른 변형 비교)

  • Chung, Haewon;Kim, Ku-Ja;Kim, Mikyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.2 s.150
    • /
    • pp.296-305
    • /
    • 2006
  • This study evaluate the effect of laundering on the deformation of knitted spandex/cotton fabrics compared with that of knitted cotton fabrics. Commercial knitted spandex/cotton and knitted cotton fabrics for T-shits were laundered in a drum-type washing machine and dried in a tumble dryer. Wale spirality, shrinkage, elastic recovery and surface contour of knitted fabrics were investigated under different laundering conditions: washing temperature, presoaking time and washing cycles. Knitted spandex/cotton fabrics had a lower angle of spirality than knitted cotton fabrics. After the first washing cycle, the angles of spirality of all the fabrics had decreased greatly. Knitted cotton fabric of low density deformed more than that of higher density. Knitted spandex/cotton. fabric of low density shrank less, because of the greater extension given during heat-set. Permanent elongation length at the 80$\%$ extension was longer than at the 50$\%$ extension, and the knitted spandex/cotton fabric which was expanded greatly during heat-set had a lower elastic recovery rate. The surface appearance of the knitted spandex/cotton fabrics was worsl~ than that of the knitted cotton fabrics before laundering and after repeated laundering, because of the much protruded cotton fibers from the yarns.

Effect of Flame Radiative Heat Transfer in Horizontal-Type HRSG with Duct Burner (덕트 버너 추가에 따른 수직형 HRSG 내 화염 복사 열전달의 영향에 관한 연구)

  • Kim, Daehee;Kim, Seungjin;Choi, Sangmin;Lee, Bong Jae;Kim, Jinil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.197-204
    • /
    • 2013
  • A method was developed for analyzing the radiation heat transfer from the duct burner flame to the heat exchanger in a heat recovery steam generator (HRSG) in order to supplement the existing thermal design process. The burner flame and the heat exchanger were considered to be imaginary planes, and the flame temperature, surface, and emissivity were simplified using an engineering approach. Three analysis cases in which the duct burner position and fuel were changed were considered. The calculated flame radiative heat transfer and local flux on the heating surface were compared with those of 3-atomic gas radiation and convection. In all analysis cases, heat transfer by 3-atomic gas radiation was very small. The ratio of the flame radiative heat transfer to the convection heat transfer on the heating surface was estimated to be as high as 8-41%. Moreover, the local heat flux on the heating surface centerline was dominated by flame radiative heat flux.

A Study on Ventilation Characteristics Made by Thin Line Type Ventilator in an Apartment House (창호형 환기장치에 의한 아파트의 환기성능에 대한 연구)

  • Chang, Hyun-Jae;Kim, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.201-207
    • /
    • 2011
  • Total heat recovery type ventilators that are connected to each room with ducts are mainly installed in Korea, but they raise concern over duct pollution. In this study, indoor environments made by thin line type ventilators installed in dwelling units of apartment houses are investigated by CFD. Results show the case that thin line type ventilators installed in each room-including kitchens-make the best indoor environment that maintains air velocity at under 0.25m/s, and evenly distributes the age of air in all areas.

A study for steam energy savings by the thermal vapor recompressor (에너지절감을 위한 폐열회수용 열압축기에 대한 고찰)

  • Lee, Jae-Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.50-54
    • /
    • 2008
  • Recently most companies require various type of energy sources, in order to be more energy efficient in their plant due to the increasing current oil price. So, the multi-national companies are shaping ideas how to reduce energy costs and use substitute energy. The purpose of this study Is to attempt to save energy by making more valuable high pressure steam through TVR(Thermal Vapor Recompressor) from the surplus low pressure steam of HRB(Heat Recovery Boiler) in sulfuric acid plant.

  • PDF

Development of $20\;Nm^3$/hr Hydrogen Generator for Hydrogen Fueling Station (수소스테이션용 $20\;Nm^3$/hr급 수소제조장치 개발)

  • Oh, Young-Sam;Baek, Young-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.263-271
    • /
    • 2006
  • In this study, $20\;Nm^3/hr$ scale compact hydrogen generator which can be apply to the hydrogen station was manufactured and tested. The design of $20\;Nm^3/hr$ scale compact hydrogen generator was upgraded on the base of $5\;Nm^3/hr$ scale plate hydrogen generator concept stacking the plate reactors. Ideas for improving system efficiency such as heat recovery from the exhaust, exhaust duct which is especially design for plate type reactor, reinforcement of insulation, enlargement of heat exchange area of reactor, introduction of desulphurizer reactor and PROX rector in a compact design etc. were applied. From the performance test, we can learn that the $20\;Nm^3/hr$ scale compact hydrogen generator can be operated steadily at 100% road condition and the methane conversion of over 94%(at S/C=3.75) was obtained. This result shows that the concept of plate type hydrogen generator can be scale-up to the $20\;Nm^3/hr$ scale and fit for hydrogen generator for on site hydrogen station application.