• Title/Summary/Keyword: heat production rate

Search Result 432, Processing Time 0.027 seconds

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction (HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구)

  • In-Heon Kwak;Eun-Han Lee;Sung-Chan Nam;Jung-Bae Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2024
  • In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.

Shalf Life Enhancement of Minimally Processed Fruits and Vegetables

  • Kim, Dong-Man
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1993.12a
    • /
    • pp.6-9
    • /
    • 1993
  • According to changes in population, economic conditions, life-stile and eating habits, the frui ts and vegetables market wi 11 be shi fted from processed (i. e. , canned) to fresh. Undressed fresh produce, consisting of washed, disinfected and peeled fruits and vegetables that either sliced or grated, are currently increased in demand by retail and institutional market which use them as salad components or in ready-to use foods, Main attributes of minimally processed fruits and vegetables are convenience and fresh-like quality. Minimally processed Products readily deteriorate in quality, especially color and texture, as a result of endogeneous enzyme enhanced respiration and microorganisms which lead to reduced shelf Iife. According to changes in population, economic conditions, life-stile and eating habits, the frui ts and vegetables market wi 11 be shi fted from processed (i. e. , canned) to fresh. Undressed fresh produce, consisting of washed, disinfected and peeled fruits and vegetables that either sliced or grated, are currently increased in demand by retail and institutional market which use them as salad components or in ready-to use foods, Main attributes of minimally processed fruits and vegetables are convenience and fresh-like quality. Minimally processed Products readily deteriorate in quality, especially color and texture, as a result of endogeneous enzyme enhanced respiration and microorganisms which lead to reduced shelf Iife. Thus. to prevent these undesirable changes , val'ious techniques such as controlled atmosphere (CA) storage, modified atmosphere OIA) storage, including vacuum packaging have been receiving considerable attention, Although milch research has been done to find optimal conditions for whole intact frui ts and vegetables, only limi ted information is avai lable on fresh cut. and other minimally processed products. 81 iced frui ts exhibi t increas~d ethylene production and respiration compal'ed to whole f, 'uits during distribution in response to tissue damage. As a result, accelerated senescence and enzymatic browning OCCUI', Recent l'esearch on minimally processed fl'uits and vegetables has mainly focused on methods to inhibit browning, due to ban on use of sulfur dioxide, In order to retard or prevent these physiological changes, val'ious al ternatives, reducing agents. acidulants, chelating agents and inol'ganic sal ts have been evaluated for use on fresh cut fl'ui ts. Al though some agents were effective replacement for sulfur dioxide. consum$\textregistered$I'S demandless use of chemical on such products. Shel~ life of minimally processed products has been extended by inhibition of metabolic reactions associated with loss of quality and by inhibition of aerobic spoilage caused by wide variety of microorganisms. Appl ication of ~I.-\ packaging, including vacuum packaging, retards the rate of respiration, prevents growth of aerobic spoilage organisms, inhibits oxidation and color deterioration. Tissue softening is another major problem in minimally processed products because enzymes re 1 a ted to ce 11 wa 11 degrada t i on are not inactivated. Various treatments have been investigated for retardation of the softening of sliced products. Some studies have concentrated on the application of an active packaging system with ~I, l. packaging and calcium infi 1 tration as possible measures to retain firmness of processed products. In my opinion, one important step for production of minimally processed frui ts wi th favorabl e color of cut surface and firm texture is the selection of better cultivar. As the view, changing tendency of fresh color by apple cultivars and relationship between the tendency and PPO activity will be discussed in the seminar. In addition to the topic, research result on quality enhancement of fresh apple slices by heat shock treatment will be introduced.

  • PDF

Studies on the Generation-to-Generation Transmission of Cytoplasmic Polyhedrosis Virus and the Effect of Their Activation on the Induction in the Next Generation in the Silkworm, Bombyx mori L. (Virus의 경란전염이 차대의 잠작에 미치는 영향에 관한 연구)

  • 임종성;김근영
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.1
    • /
    • pp.85-92
    • /
    • 1974
  • Many of studies on the transovarial transmission of occult virus and their activation due to various stresses such as cold or heat treatment, chemical feeding, and nutritional deficiency, etc., in the silkworm, Bombyx mori L. have been made, but any attempts have been not made to control virus diseases by detection of the occult virus-carried moths in the production of silkworm egg of hybrids, because of difficulty to detect occult virus in any stage. Therefore, it may be worth while to disclose whether a sublethal infection of the moths from which active virus are detectable, has the same level of induction rate as that of occult virus activation, thus to apply its results for the reduction of the occurence of virus diseases in silkworm rearing. For these purposes, the following experiment was conducted as one of preliminary steps. In this study, investigations on the generation-to-generation transmission of occult virus and a sublethal infection, and the role of chromosomal gene of the host, Jam 103 and Jam 104 in the Previous generation, and Jam 103 x Jam 103 and Jam 104 f Jam 104 in the next generation were made for the induction of virus diseases due to the transmitted virus. The frequency of cytoplasmic polyhedrosis due to the induction in the F$_1$ generation was markedly higher in the cross-batches, male$\times$female and male$\times$female in which inoculated individuals were used as fem ale parents than in the cross-batches, male$\times$female and male$\times$female in which virus has been not inoculated or inoculated only to male in the previous generation. The tendency of increasing rate was observed in any treatments; such as the inoculations of cytoplasmic polyhedrosis virus (10$\^$5/, 10$\^$6/ 10$\^$7, and 10$\^$8//ml ill different concentration of inocula) , cold-treatment (5$^{\circ}C$, 12hrs or 24hrs), and formalin-feeding treatment (2% or 3%). The shape of polyhedra (tetragonal in outline) examined in the F, larvae was identified as that of the inoculated polyhedra with partial application of immunofluorescent techniques. These results suggests that the cytoplasmic polyhedrosis virus in B. meri L. are transmitted to the next generation through the egg, apparently in the occult state. And the experimental results of various cross-batches revealed the egg cytoplasm plays an important part i the transmission of the occult virus of the cytoplasmic polyhedrosis virus,

  • PDF

Global Warming on Double Cropping in North Korea (지구온난화에 따른 북한의 두벌농사 특성 평가)

  • Kang, Yang-Soon;Lee, Jong-Hoon;Lee, Byong-Lyol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.214-219
    • /
    • 2010
  • In order to evaluate the benefits of global warming on the double cropping with staple crops in North-Korea, four aspects such as the increasing rate of air temperature, the wintering temperatures for winter crops, the causing temperature of cool injury to rice and the securing of accumulated temperature for the double cropping in the different agricultural climate zones were analyzed by comparing the differences between the past 22 years from 1973 to 1994 and the recent 5 years from 2002 to 2006. The warming rate in recent daily mean air temperature of $8.96^{\circ}C$ in North Korea was higher by $0.64^{\circ}C$ than that in the past with large regional variations ranging from $1.06^{\circ}C$ in Samjiyeon of northern inland semi-alpine zone to $12.26^{\circ}C$ in Jangjeon of east central coastal zone. With the accumulated temperatures of more than $3,150^{\circ}C$ and $2,650^{\circ}C$, it was possible to apply the double cropping patterns with winter wheat and for cropping patterns with spring potato, respectively, to the whole region except for the northern inland semi-alpine zone. However, the wintering temperature higher than $-15^{\circ}C$ of average daily minimum air temperature of January, cropping patterns were impossible to northern inland semi-alpine zone and most regions of the northern mountainous zone. The days passed by below $17^{\circ}C$ in daily mean air temperature, causing the spikelet sterility at meiotic stage of rice in July, were a lot recorded from 21 to 29 days in northern inland semi-alpine zone and from 2 to 10 days in east-northern coastal zone, respectively. Therefore, a reasonable utilization of heat / temperature resources would relieve the limiting factors in double cropping for stable production of staple crops in North-Korea.

Studies on the Nitrogenous Utilization and Basal Metabolism of Korean Native Goat (한국(韓國) 재래산양(在來山羊)의 질소대사(窒素代謝) 및 기초대사량(基礎代謝量)에 관(關)한 연구(硏究))

  • Oh, Hong Rock
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.546-555
    • /
    • 1982
  • To evaluate the digestibility and absorbability of proteins, and the rates of energy and nitrogen(N) metabolism of the Korean native goats, studies were carried out with open type respiration apparatus based on the nitrogen-carbon method. The results on the nitrogen retention and the metabolic rate of energy, which was obtained with one male (10-month-old) and one female (24-month-old) goats, both weighing ${\simeq}20kg$, are summarized as follows. 1. When the goats were fed ad libitum the medium quality orchard grass hay, they consumed hay about 0.66 to 0.92% of body weight per day. The hay intake was remained the same even when high quality hay was provided. This amount of hay intake was relatively lower than that of dairy goat and sheep. It was believed to be partly due to the change in feeding enviroment. When fed with hay and soybean meal together, the goats ate hay about 1.06% and soybean meal about 0.60% of body weight, corresponding to 1.66% of body weight as fed basis. 2. The $CO_2$ gas produced from the goat in the open type respiration chamber and absorbed with KOH solution was estimated to be 99~117g/day. The difference in feed intake did not influence the $CO_2$ production; however, these seems to be a linea relationship between body weight and $CO_2$ production. 3. When fed orchard grass hay only, the goats showed protein digestibility of 24~41%. The protein digestibility incresed to 58.2% when fed hay and soybean meal together. A negative nitrogen balance(-0.16g N/day) was observed with goats fed 11.53g N originated from 212g hay and 150g soybean meal. Converting that nitrogen ingested to a crude protein, the amount of crude protein intake by the goats per day was 77.9g compared to 40~45g N known to be required in a day by goat weighing 20kg, indicating that the extra protein ingested was metabolized to provide energy. 4. When the male and female goats comsumed 624 kcal gross energy and 824 kcal gross energy by consuming 158g and 213g of hay, respectively, the digestible energy intake was calculated to be 260kcal for the male and 199kcal for the female goat. The daily heat production of male and female goats were 338kcal and 334kcal, respectively, when fed hay only. However, the female goat fed 212g hay and 150g soybean meal produced about 591kcal per day. Consequently, the energy requirment of the Korean native goats weighing ${\simeq}20kg$ was concluded to be $${\geq_-}$$600kcal net energy per day. 5. The fasting heat product ion of a male goat weighing 27.7kg was 412kcal per day when fasted for 2~3 days. When fasted for 3~4 days, the value decresed to 240kcal. The enviromental temperatures during the expreimental period were ranged from 19 to $34.5^{\circ}C$. The goats seemed to be panting when the chamber temperature rose to $32^{\circ}C$ or above. 6. When fed low levels of dietary protein, serum protein levels of the goats were decresed slightly ($${\leq_-}$$10%); however, urea content in the serum was observed to decrese to a great extent (3X).

  • PDF

Ventilation Effect of the Greenhouse with Folding Panel Type Windows (패널굴절방식 환기창 온실의 환기효과)

  • Kim, Jin-Young;Lee, Si-Young;Kim, Hyun-Hwan;Chun, Hee;Yun, In-Hak
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • In this study, new development of natural ventilation window was accomplished to control environment of greenhouse with no use of farced ventilation during hot season. The ventilation effect of developed ventilation window was investigated in experimental greenhouse which was designed using side wall panel and folding type panel fur natural ventilation. Folding panel type ventilation window was designed to open upper part of the side wall and top of the roof using two hinges which are located bottom of the side wall and the roof panel to grab one side of each panels and guide the other side along with the guidance rail. Developed ventilation window has top ventilation part with maximum moving distance X=ι (1-cos$\theta$)=848.5 mm and side ventilation part with maximum moving distance Y=ι/2 $\times$sin$\theta$=1,184.4 mm at 45$^{\circ}$ of theoretical opening angle. It took 4.5 minutes to open roof vent fully and temperature at 1.2 and 0.8 m height decreased after 1 minute from starting opening and became equilibrium state maintaining 3-4$^{\circ}C$ difference after 2 minutes from complete opening. Air exchange rate was 15.2~39.3 h$^{-1}$ which was more than 10~15 h$^{-1}$ of continuous type and Venlo type greenhouse. The descent effect of temperature by ventilation windows was two times higher than Venlo type greenhouse.

Degradation Ability and Population of Resistant Strains of Chlorothalonil in Upland Soil Distributed in Honam Area (호남지역 밭토양에 분포된 Chlorothalonil 내성균(耐性菌)의 밀도(密度)와 분해능(分解能))

  • Lee, Sang-Bok;Choi, Yoon-Hee;Yoo, Chul-Hyun;So, Jae-Don;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 1996
  • This experiment was conducted to obtain the basis of degradation of remaining agricultural chemicals accumulated in upland soils of Honam district in Korea. The population. relative growth rate(RGR). chlorothalonil(TPN)-degradation ability and bacterialogical characteristics of TPN resistant strains were investigated in TPN levels of 0, 25, 50, 100 and $500{\mu}l/ml$ compared with Mancozeb. A number of TPN-resistant bacteria were differ in the area of examined and were decreased with higher levels of TPN. The resistance of bacteria was stronger in TPN than Mancozeb but the resistance of fungi was vise versa. RGR of bacteria in the culture was the highest at the level of $50{\mu}l/ml$ and the lowest in $500{\mu}l/ml$ of TPN. TPN-degradation ability of bacteda isolated in various TPN levels was varied : only 8 percentage of bacteria showed 75 percentage or more degradation ability. The higher the concentration in TPN resistance, the larger the number of strains carried great ability to decompose pesticide residues. The strains having higher decomposition ability was rod-shapes cells and senstive to heat. Analyses of the indol production, methyl red, and V-P test have given similar results, with negative reaction in all these strain, while the other biochemical characteristics were differ in the strains. Based on these, these strains might be classified into Pseudomonas sp., Corynebacterium sp., Acinetobacter sp. and Moraxcella sp.

  • PDF

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Development of Economic Culture System Using Wastewater for Microalgae in Winter Season (폐수를 이용한 겨울철 경제적 미세조류 배양 시스템의 개발)

  • Lee, Sang-Ah;Lee, Changsoo;Lee, Seung-Hoon;An, Kwang-Guk;Oh, Hee-Mock;Kim, Hee-Sik;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The outdoor mass cultivation is not possible for microalgae in Korea all year round, due to cold winter season. It is not easy to maintain proper level of productivity of microalgae even in winter. To prevent a drastic decrease of temperature in a greenhouse, two layers were covered additionally, inside the original plastic layer of the greenhouse. The middle layer was made up of plastic and the inner layer, of non-woven fabric. Acrylic transparent bioreactors were constructed to get more sunlight, not only from the upper side but also from the lateral and bottom directions. In winter at freezing temperatures, six different culture conditions were compared in the triply covered, insulated greenhouse. Wastewater after anaerobic digestion was used for the cultivation of microalgae to minimize the production cost. Water temperature in the bioreactors remained above $10^{\circ}C$ on average, even without any external heating system, proving that the triple-layered greenhouse is effective in keeping heat. Algal biomass reached to 0.37g $L^{-1}$ with the highest temperature, in the experimental group of light-reflection board at the bottom, with nitrogen and phosphorus removal rate of 92% and 99%, respectively. When fatty acid composition was analyzed using gas-chromatography, linoleate (C18 : 3n3) occupied the highest proportion up to 61%, in the all experiment groups. Chemical oxygen demand (COD), however, did not decrease during the cultivation, but rather increased. Although the algal biomass productivity was not comparable to warm seasons, it was possible to maintain water temperature for algae cultivation even in the coldest season, at the minimum cost.

A Study on the Material and Production Method of Bronze Casting Earthen Mold - Focusing on Earthen Mold Excavated in Dongcheon-dong, Gyungju - (청동주조 토제범(土製范)의 재질과 제작기법 연구 - 경주 동천동 출토 토제범을 중심으로 -)

  • Son, Da-nim;Yang, Hee-jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.108-125
    • /
    • 2013
  • This study examined the actual reconstruction drawing, composite mineral, particle size and property test, fine organic matters, color differences and main ingredients of the earthen mold excavated in Dongcheon-dong, Gyungju. The cross-section of the inner mold and outer mold divides into inside (1st layer) and outside (2nd layer), with organic matters mixed outside. The cross-section has been altered due to heat and form removal agent. X-ray analysis revealed that the layer was made of minerals with high transmissivity and only quartz particles were observed through a polarizing microscope. The inside of cross-section in SEM observation identified enlarged air gap, with crack developed in the center, but no changes observed on the outside. The particle size of the composites is almost the same for the inner mold and outer mold and is silt clay loam. The ratio between silt clay and silt clay loam was about 2.7:1 and 2.9:1 respectively. In the property test, the density and absorption rate of inner mold and outer mold were similar, but porosity was different, with inner mold of 27.36% and outer mold of 31.09%. The color difference of cross-section seems to have been caused by the spread of soot on the 1st layer surface for removal of form or by the covering of ink to protect the 1st layer. Composite mineral analysis revealed the same composition for the inner mold and outer mold, except for the magnetite that was detected in the inner mold alone. As for the main ingredient analysis, the average content of $SiO_2$ was 71.64% and that of $Al_2O_3$ was 14.59%. As for the sub-ingredients, $Fe_2O_3$ was 4.51%, $K_2O$ 3.06%, $Na_2O$, MgO, CaO, $TiO_2$, $P_2O_5$ and MnO was less than 2%.