• 제목/요약/키워드: heat load

검색결과 1,728건 처리시간 0.028초

축사용 지윤재료의 복사열전달에 관한 연구 (A Study on Heat Transmission Through Roof Materials for Amimal Structures)

  • 장희대;김문기고재군
    • 한국농공학회지
    • /
    • 제19권4호
    • /
    • pp.4544-4554
    • /
    • 1977
  • The objective of this study was to measure and compare the radiation heat load generated through a few chosen shade-materials that would protect animals from the direct solar radiation heat in summer condition. The results obtained from this study are as follows; 1. when the materials were used in original state, the most effective material for radiation heat reduction was slate, followed by aluminum and galvanized steel successively. 2. The radiation heat load under the white top and black underside aluminum was 2.5 Cal. per hour per square cm less than that under the bare aluminum of their diurnal peak. 3. When the modified galvanized steel was used, the radiation heat load was reduced as much as 2.4 cal per hour per square cm by attaching plywood under the galvanized steel, 3.9 cal per hour per square cm by attaching plywood and coating white paint on the top of the galvanized steel. The galvanized steel covered by hay material showes similar result as that of the galvanized steel lined with plywood. 4. In case of slate, the radiation heat reduction value was increased by using bare slate, white top slate and white-top-black-underside slate in the descending order. 5. The calculated value of radiosity of inside surface of aluminum was about 20 percent of the radiation heat load, the reduced value of radiosity by coating paint was considered to be indirect indication of the effect of total radiation heat load reduction of painted surface. 6. About an hour of the time lag of radiation heat load peak on sept. 10 for slate materials should be investigated more comprehensively in future.

  • PDF

Thermal-hydraulic and load following performance analysis of a heat pipe cooled reactor

  • Guanghui Jiao;Genglei Xia;Jianjun Wang;Minjun Peng
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1698-1711
    • /
    • 2024
  • Heat pipe cooled reactors have gained attention as a potential solution for nuclear power generation in space and deep sea applications because of their simple design, scalability, safety and reliability. However, under complex operating conditions, a control strategy for variable load operation is necessary. This paper presents a two-dimensional transient characteristics analysis program for a heat pipe cooled reactor and proposes a variable load control strategy using the recuperator bypass (CSURB). The program was verified against previous studies, and steady-state and step-load operating conditions were calculated. For normal operating condition, the predicted temperature distribution with constant heat pipe temperature boundary conditions agrees well with the literature, with a maximum temperature difference of 0.4 K. With the implementation of the control strategy using the recuperator bypass (CSURB) proposed in this paper, it becomes feasible to achieve variable load operation and return the system to a steady state solely through the self-regulation of the reactor, without the need to operate the control drum. The average temperature difference of the fuel does not exceed 1 % at the four power levels of 70 %,80 %, 90 % and 100 % Full power. The output power of the turbine can match the load change process, and the temperature difference between the inlet and outlet of the turbine increases as the power decreases.

지역난방 사용자 구성비에 따른 열소비 패턴 분석 (Heat Consumption Pattern Analysis by the Component Ratio of District Heating Users)

  • 이훈;이민경;김래현
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.211-225
    • /
    • 2013
  • 본 연구에서는 서로 다른 위도의 도시 유형별로 주택과 건물 구성비를 가진 3지역을 선정하여 대상 지역별로 2008년 1년간(1.1~12.31)의 실제 운전실적을 이용하여 지역난방 사용자의 일일 및 연간 열소비 패턴을 분석하고, 지역별 상호 차이점을 파악하기 위하여 주택과 건물의 열소비 패턴을 비교 분석하였다. 특히 본 연구에서는 실제 주택 및 건물 지역난방 사용자가 사용한 열소비 패턴을 매시간대별로 파악하고, 연결 열부하(난방면적 ${\times}$ 단위열부하 : 시설용량과 지역난방 배관망의 설계기준이 되는 열부하로 난방면적에 용도별 단위열부하를 곱하여 산출[Gcal/h])와의 관계를 분석하여 일일, 연간 및 최대 부하율 결과값을 도출함으로써 주택 및 건물 지역난방 사용자 비율에 따른 최적의 열원시설 용량산정이 가능케 하고 수요개발(해당 시설용량으로 열공급이 가능한 지역난방 사용자의 범위로 각 사용자기계실의 연결열부하 합과 같음.)단계에서의 정확한 방향을 제시할 수 있는 근거를 도출하였다.

열펌프 시스템의 규모 결정을 위한 온돌난방부하 특성 (Characteristics of Ondol Heating Load for the Determination of Heat Pump Power)

  • 노정근;백은기;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.217-224
    • /
    • 2003
  • To find out heating load and to determine the power of heat pump compressor for the Ondol room heating the COP of heat pump, the variation of Ondol room air temperature, the variation of ambient temperature and power consumption of heat pump are analyzed. The results from this study were summarized as follows: 1. The COP of the heat pump in close loop decreased as the ambient air temperature. The COP was 2.26 when the temperature difference of condenser was $20\pm3^{\circ}C$. 2. The Ondol surface temperature was $25\pm3^{\circ}C$ when the hot water of $40^{\circ}C$ was supplied from hot water storage tank to the Ondol and the temperature difference between the Ondol surface and the room air temperature was $7~8^{\circ}C$. 3. The ratio of thermal conduction heating load to total heating load in Ondol heating space was found to be 83% and ratio of ventilation heating load was 17%. Therefore, the thermal conduction heating load was confirmod to be a major heating load in Ondol heating space. 4. In case of the ambient temperature of $3.2^{\circ}C$, the efficiency of heat exchange of Ondol heating system was 85%. 5. The heating load per Ondol heating surface area and volume of Ondol room space were theoretically analyzed. In case of the room temperature of $20^{\circ}C$ and the ambient temperature of $-3.2~3.8^{\circ}C$, the heating load per Ondol surface area was 115.8~167.6kJ/h ㆍ㎥ and per Ondol mom space volume was 50.2~72.7kJ/h ㆍ㎥. 6. The compressor power of heat pump fur the Ondol room heating could be determined with the heating load analyzed in this study In case of the Ondol room air temperature of 17~2$0^{\circ}C$ and the ambient temperature of -5~3.8$^{\circ}C$, the compressor power of heat pump per Ondol surface area was analyzed to be $2.3\times10^{-2}psm^2$, and per volume of Ondol room space $1.0\times10^{-2}1.4\times10^{-2}ps/m^2$ps.

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

해수열원 스크류 히트펌프의 연간 난방운전 성능 모사 (A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump)

  • 백영진;김민성;장기창;이영수;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.88-95
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

해수열원 스크류 히트펌프의 연간 난방운전 성능 시뮬레이션 (A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump)

  • 백영진;김민성;장기창;강병찬;라호상;김현주
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.488-493
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

  • PDF

창호의 단열성능에 따른 공동주택 냉난방 부하량 변화 (The Change of Heating and Cooling Load according to the Thermal Insulation Performance of Window for an Apartment House)

  • 송수빈;김영탁;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.853-856
    • /
    • 2008
  • Windows have an great effect on annual building load because windows are the weakest parts of building envelope thermally. To reduce the consumption of building energy, the thermal performance of window has to be improved in first place. Therefore this research aims to make a quantitative analysis of the heating and cooling load according to the window thermal performance using the heat load simulation program. As a result of the simulation, annual heat load is down 38% according to the decrease of U-value of window, 1.00 W/$m^2K$. and annual heat load is up 10% according to the decrease of shading coefficient, 0.20. The annual load of the window with Low-E glass is 15% lower than the window with pair glass.

  • PDF

변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 (Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

경수로 사용후핵연료 저장조 열부하 평가를 위한 연소조건 인자 민감도 분석 (Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool)

  • 김인영;이은철
    • 방사성폐기물학회지
    • /
    • 제9권4호
    • /
    • pp.237-245
    • /
    • 2011
  • 후쿠시마 사고 이후 사용후핵연료 저장시설 안전성 재검증 필요성이 증대되고 있는 가운데, 재검증 결과의 신뢰성 향상을 위해 열부하 평가결과의 정확도 향상이 요구되고 있다. 이를 위한 기초연구로 본 연구에서는 상대적으로 중요성이 저평가되었던, 저장시나리오, 연소조건 관련 인자와 같이 붕괴열 및 열부하 평가 영향인자를 도출하고, 고리 4호기를 대상으로 ORIGEN2 코드를 이용해 그 효과를 평가하였다. 대표 저장시나리오에 대한 열부하 평가 결과, 최후 방출 핵연료의 붕괴열은 시나리오에 따라 전체 열부하의 최대 80.42%를 차지해 저장시설 열부하에 지배적인 영향을 미침이 확인되었다. 또한 연소조건 인자로 선택된 축 방향 연소 효과, 연소이력, 비출력 효과에 대한 민감도 분석 수행 결과, 냉각기간이 짧을수록 각 인자의 붕괴열에 대한 영향이 커지는 것으로 확인되었다. 각 인자별로는 비출력, 연소이력, 축 방향 연소 효과의 순으로 붕괴열에 대한 영향력이 컸으며, 특히 비출력의 경우 방출 직후 평균값의 0.34에서 1.66배, 방출 1년 후에는 평균 대비 0.55에서 1.37배까지 붕괴열 변화를 초래함이 확인되었다. 즉, 저장시설의 열부하 평가와 같이 냉각기간이 짧은 핵연료에 대한 해석 시 비출력, 연소이력과 같은 연소조건인자가 해석결과에 매우 큰 차이를 초래할 수 있으므로, 해석결과의 정확도 향상을 위해 기존 해석자의 공학적 판단에 의거한 임의 인자 대표성 핵연료 선택방식 대신 실제 운전 데이터의 적용 등이 필요할 것으로 보인다. 본 연구 결과는 향후 열부하 해석 결과의 정확도 향상 및 불확실도 평가를 위한 기초자료로 활용될 수 있을 것으로 사료된다.