• Title/Summary/Keyword: heat keeping rate

Search Result 35, Processing Time 0.021 seconds

Studies on the Packaging and Preservation of Kimchi (우리나라 김치의 포장과 저장방법에 관한 연구)

  • Lee, Yang-Hee;Yang, Ick-Whan
    • Applied Biological Chemistry
    • /
    • v.13 no.3
    • /
    • pp.207-218
    • /
    • 1970
  • Studies were carried out to develope the most economical and practical methods of packaging and preservation of kimchi, so commercialization of kimchi manufacture could proceed rapidly. The results obtained may be summarized as following. (1) It is generally established that the acceptable range of lactic acid content of kimchi is between 0.4% and 0.75%. Based on sensory evaluation, kimchi having lactic acid content below 0.4% and above 0.75% was not edible, and the time of optimum taste corresponded to the vicinity of 0.5% of lactic acid content. For the refrigeration storage with or without preservatives, the packaging kimchi in plastic film must be done at the lactic acid content of 0.45%, for lactic acid fermentation will continue slowly after the packaging. However, for the heat sterilized kimchi the packaging should be done at the 0.5% of lactic acid content for the best because lactic acid fermentation is completely stopped after the packaging. (2) Polyethylene, polypropylene, and polycello were chosen as suitable packaging materials. Polyethylene is cheapest among them but kimchi packaged in this film was damaged frequently in handling process and gave off kimchi flavor. On the other hand polypropylene also gave off kimchi flavor, but its higher mechanical strength gave better protection to kimchi and it had superior display effect due to the transparancy. Therefore polypropylene made much better packaging material. Polycello proved to be the best packaging material from the standpoint of physical characteristics but its price is higher than that of other plastic films. To be effective, the thickness of plastic films for packaging kimchi must exceed 0.08mm. (3) Keeping property of kimchi appeared to be excellent by means of freezing. However, by the time the frozen kimchi was thawed out at room temperature, moisture loss due to drip was extensive, rendering the kimchi too stringy. (4) Preservation of kimchi at refrigerated temperatures proved to be the best method and under the refrigerated condition the kimchi remained fresh as long as 3 months. The best results were obtained when kimchi was held at $0^{\circ}C$. (5) In general, preservatives alone were not too elective in preserving kimchi. Among them potassium sorbate appeared to be most effective with the four fold extension of self-life at $20^{\circ}C$ and two fold extension at $30^{\circ}C$. (6) In heat sterilization the thickness of packaged kimchi product had a geat effect upon the rate of heat penetration. When the thickness ranged from 1.5 to 1.8cm, the kimchi in such package could be sterilized at $65^{\circ}C$ for 20 minutes. Kimchi so heat treated could be kept at room temperature as long as one month without apparent changes in quality. (7) Among combination methods, preservation at refrigerated and heat sterilization could be favorably combined. When kimchi was stored at $4^{\circ}C$ after being sterilized at $65^{\circ}C$ for 20 minutes, it was possible to preserve the kimchi for more than 4 months.

  • PDF

Thermophilic Biohydrogen Production from Glucose with a Long-term Operation of CSTR (CSTR의 장기운전을 통한 포도당으로부터의 고온 수소생산)

  • Ahn, Yeong-Hee;Oh, You-Kwan;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.425-430
    • /
    • 2005
  • Thermophilic $H_2$ was produced for 1 year using a bench-scale continuous stirred tank reactor(CSTR). The CSTR was inoculated with anaerobically digested sludge after heat treatment and fed with a glucose-based medium. The reactor showed relatively short start-up period(30 days) and high maximal $H_2$ yield(2.4 mol $H_2/mol$ glucose). Keeping pH 5.0 or less suppressed methanogenic activity. Bacteria affiliated with Thermoanaerobacterium thermosaccharolyticum kept being dominant from approximately 40 days as determined by DGGE. Environmental perturbation(pH or temperature) caused the decrease of biomass concentration in the reactor and the instability of reactor performance, $H_2$ production rate and $H_2$ yield. The unstable performance was accompanied with high concentration of lactate in the effluent. Taken together, the poor recovery of CSTR after perturbations could be partly explained by low biomass concentration and/or metabolic shift of the major population in the CSTR.

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

Studies on the Preparation of Fruit Bases for Mixed Yoghurt -Changes in Texture of Fruit Fresh during Heat Treatment- (혼합(混合) 요구르트 과실기제(果實基製)의 가공(加工)에 관한 연구(硏究) -열처리과정중(熱處理過程中) 과실(果實)의 조질변화(組質變化)에 대(對)하여-)

  • Kim, Eun Joo;Choi, Woo Young
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.182-189
    • /
    • 1980
  • This experiment was carried out to study on methods of processing the fruit base which is to be used for preparing the fruit yoghurts. Common fruits were compared and peach was chosen among them for this purpose by determing the rate of decrease in hardness during the process of cooking. The maturity, temperature of cooking and methods of peeling were tested to maintain the desirable hardness during the process, and the effects of metallic ion addition on the hardness of the flesh were also studied. The results obtained were as follows. 1. The peaches were keeping the most stable texture during cooking, among common fruits, however the hardness of apples were decreased markedly. Rate of decreases in the flesh hardness were high during the initial stages of cooking then slowered in all fruits tested. 2. Flesh hardness of the peaches were largely affected by the temperature of cooking. And the texture of freeze-stored fruits was severly damaged during thawing, so that could be used only for the limited purposes such as for stirred-type yoghurt. 3. Divalent matallic ions, especially calcium ion, were effective for supporting the flesh hardness of peaches during cooking. 4. The optimal concentration of calcium chloride addition was 0.3%, and this resulted in its final concentration in the product under the legal dosage without any subsquent changes in colour and flavor. 5. The effects of calcium chloride addition were greater in the froms of dices than in those of slices, and in overmature fleshs than in immature ones. 6. Treatment of calcium chloride by soaking the slices or dices of lye-peeled peaches in 0.3% solution was found to be adaptable for the practical process.

  • PDF

Development of Economic Culture System Using Wastewater for Microalgae in Winter Season (폐수를 이용한 겨울철 경제적 미세조류 배양 시스템의 개발)

  • Lee, Sang-Ah;Lee, Changsoo;Lee, Seung-Hoon;An, Kwang-Guk;Oh, Hee-Mock;Kim, Hee-Sik;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The outdoor mass cultivation is not possible for microalgae in Korea all year round, due to cold winter season. It is not easy to maintain proper level of productivity of microalgae even in winter. To prevent a drastic decrease of temperature in a greenhouse, two layers were covered additionally, inside the original plastic layer of the greenhouse. The middle layer was made up of plastic and the inner layer, of non-woven fabric. Acrylic transparent bioreactors were constructed to get more sunlight, not only from the upper side but also from the lateral and bottom directions. In winter at freezing temperatures, six different culture conditions were compared in the triply covered, insulated greenhouse. Wastewater after anaerobic digestion was used for the cultivation of microalgae to minimize the production cost. Water temperature in the bioreactors remained above $10^{\circ}C$ on average, even without any external heating system, proving that the triple-layered greenhouse is effective in keeping heat. Algal biomass reached to 0.37g $L^{-1}$ with the highest temperature, in the experimental group of light-reflection board at the bottom, with nitrogen and phosphorus removal rate of 92% and 99%, respectively. When fatty acid composition was analyzed using gas-chromatography, linoleate (C18 : 3n3) occupied the highest proportion up to 61%, in the all experiment groups. Chemical oxygen demand (COD), however, did not decrease during the cultivation, but rather increased. Although the algal biomass productivity was not comparable to warm seasons, it was possible to maintain water temperature for algae cultivation even in the coldest season, at the minimum cost.