• Title/Summary/Keyword: heat islands

Search Result 61, Processing Time 0.023 seconds

A Definition of Korean Heat Waves and Their Spatio-temporal Patterns (우리나라에 적합한 열파의 정의와 그 시.공간적 발생패턴)

  • Choi, Gwang-Yong
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.527-544
    • /
    • 2006
  • This study provides a definition of heat waves, which indicate the conditions of strong sultriness in summer, appropriate to Korea and intends to clarify long term(1973-2006) averaged spatial and temporal patterns of annual frequency of heat waves with respect to their intensity. Based on examination of the Korean mortality rate changes due to increase of apparent temperature under hot and humid summer conditions, three consecutive days with at least $32.5^{\circ}C,\;35.5^{\circ}C,\;38.5^{\circ}C,\;and\;41.5^{\circ}C$ of daily maximum Heat Index are defined as the Hot Spell(HS), the Heat Wave(HW), the Strong Heat Wave(SHW), and the Extreme Heat Wave(EHW), respectively. The annual frequency of all categories of heat waves is relatively low in high-elevated regions or on islands adjacent to seas. In contrast, the maximum annual frequency of heat waves during the study period as well as annual average frequency are highest in interior, low-elevated regions along major rivers in South Korea, particularly during the Changma Break period(between late July and mid-August). There is no obvious increasing or decreasing trend in the annual total frequency of all categories of heat waves for the study period However, the maximum annual frequencies of HS days at each weather station were recorded mainly in the 1970s, while most of maximum frequency records of both the HW and the SHW at individual weather stations were observed in the 1990s. It is also revealed that when heat waves occur in South Korea high humidity as well as high temperature contributes to increasing the heat wave intensity by $4.3-9.5^{\circ}C$. These results provide a useful basis to help develop a heat wave warning system appropriate to Korea.

Study on the Impacts of Lateral Boundary Conditions and Thermodynamics of Urban Park using Coupling System of WRF / ENVI-met (WRF / ENVI-met 통합모형을 적용한 도시 공원의 경계 조건 및 열역학적 영향 분석 연구)

  • Lee, Tae-Jin;Yoo, Jung-Woo;Lee, Hwawoon;Won, Hyo-sung;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.493-507
    • /
    • 2017
  • Since the late 20th century, the urbanization in Korea has been rapidly increasing, especially in major cities like Seoul, as a result of industrialization. One of the aspects of urbanization is coating the surfaces with impervious concrete or asphalt that water cannot penetrate. In addition, various urban, such as urban heat islands, which also have a great impact on the urban environment, occur within the cities. Therefore, the urban environment is gradually becoming hot and dry, and the need for more urban parks to compensate for these negative impacts is growing. Thus, several numerical studies have been conducted to assess these problems using coupled Numerical Weather Prediction (NWP) and Computational Fluid Dynamics (CFD). In this study, an experiment was conducted to determine the accuracy of the area of the input field using Weather Research and Forecasting (WRF) model, and applying the more accurate input field to a numerical simulation using ENVI-met, in order to investigate the effect of urban parks on the thermal comfort. The results showed that an input field with a larger area is more accurate than that with a smaller area, because the surrounding terrain and cities are considered in details in the experiment with the larger area. Subsequently, the more accurate input field was used in ENVI-met, and the results of this simulation showed that the presence of the urban park increased the thermal comfort and improved the humidity conditions.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

Air Temperature Differences in Areas with High-rise Buildings (초고층빌딩지역의 기온차)

  • Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • In Seoul, skyscrapers are built in commercial zones known as residential-commercial complexes, which cause such environmental problems as urban heat islands(UHI) and air pollution. To investigate air temperature differences in areas near skyscrapers at Gangnam-gu, Seoul, South Korea, fixed air temperature observation and traverse observations were performed from March 16, 2008 to March 15, 2009. The annual mean air temperature at Tower Palace(TPL) was higher than that at Sookmyung Girls' High School(SMG) by $0.7^{\circ}C$, although the distance between the two observation positions is only 200m. The number of tropical nights at TPL was 13, while that at SMG was 5. The higher air temperature at TPL was due to a significantly lower sky view factor(SVF), which prevented long-wave radiation from emitting into the sky. The highest air temperature increases near TPL occurred on summer nights because of the high-electricity consumption value of $70.22Wh/m^2$ for the TPL block in August due to air conditioning for cooling. It is concluded that the warm air pocket centered on TPL.

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Comparative Evaluation of Cool Surface Ratio in University Campus: A Case Study of KNU and UC Davis (대학 캠퍼스의 쿨표면 비율 비교평가: 경북대학교와 UC Davis를 사례로)

  • Hwang, Young-Seok;Um, Jung-Sup
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.117-127
    • /
    • 2015
  • The cool surface ratio could be used as a proxy of the overall thermal environment contributing to heat islands in urban area. This research proposes a comparative evaluation framework in an objective and quantitative way for measuring cool surface ratios. Two university campuses (Kyungpook National University: KNU, South Korea and UC Davis: University of California, Davis, USA) were selected as case study sites in order to monitor cool surface condition. Google Earth combined with digital maps realistically identified the major type of cool surfaces such as cool roofs and water bodies in the study area. Cool surfaces were sparsely identified over the KNU campus while the UC Davis campus was heavily covered by cool surfaces such as cool roofs and water bodies, resulting in almost four times more first-grade cool surfaces, as compared to KNU. It is confirmed that standard remote sensing technology can offer the viable method of measuring and comparing the campus-wide cool surface condition. It is anticipated that this research output could be used as a valuable reference to initiate a nation-wide cool surface strategy since objective evidence has been provided based on area-wide measurement for the cool surface in the two university context.

The Influence of the Changing of Cyclic Frequency on the Corrosion Fatigue Fracture Behavior of the Dual Phase Steel in 3% NaCl Solution (3% NaCl 수용액중에서 복합조직강의 부식피로 파괴거동에 미치는 주파수변화의 영향)

  • O, Se-Uk;Sin, Gyu-Dong;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1995
  • Fatigue tests were carried out by a rotary bending testing machine of cantilever type. M.E.F.(ferrite encapsulated islands of martensite) materials were made by a series of heat treatment from a low carbon steel(SM 20 C). The fatigue tests were conducted at stress levels of 302 MPa and with frequencies of 25Hz, 2.5 Hz and 0.5 Hz in 3% NaCl solution. The fatigue strength increased with frequency got higher. The microcracks and corrosion pits were generated at the boundary between the matrix and the 2nd phase. The cracks generated by the corrosion pits were coalesced with the pits around the notch and became the initial crack. The $N_i/N_f$ ratio increased as the frequency and stress level decreased. The interference phenomenon increased with stress level and frequency gots higher. The crack propagation rate was delayed as the stress level lowers and the frequency gets higher, however, the range of the stress intensity factor depended only on a stress level.

  • PDF

Planning Apartment Complexes to Enhance Thermal Environment (열환경 향상을 위한 아파트 주동배치계획)

  • Oh, Kyushik;Seo, Anseon;Jung, Seunghyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • Environmental pollution becomes a serious problem in urban areas. Moreover, densely constructed strictures can be problematic to cities due to the rising temperature they cause as well as the increasing accumulation of air pollutants they generate by interrupting airflow. In order to improve residential amenity, it is necessary to improve the thermal environment by preserving wind corridors. To do so requires consideration to important aspects such as building arrangement, scale, vegetation, and land cover, which all have an effect on wind corridors. In this study, a typical arrangement-complex, which is the primary form of housing in Korea, was selected as a case ENVI-met. As a result of empirical analysis, the optimal apartment-complex arrangement that is most suitable for mitigating urban heat-islands phenomenon was determined, The outcome of this study can be utilized as a planning technique for apartment-complex construction in consideration to type of buildings, scale of buildings, and land cover.

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF