• 제목/요약/키워드: heat exposure

검색결과 540건 처리시간 0.022초

자착식 부틸고무시트에 다발형 유리섬유직포를 적층한 비노출방수공법에 관한 연구 (An Study on the Non-Exposure Waterproofing Method Laminated Twist Glass Fiber Mesh on Self Adhesion Butyl Rubber Sheet)

  • 방명진;박진상;강효진;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.133-136
    • /
    • 2007
  • It has been applied the self adhesion waterproofing sheet which is developed from exist asphalt waterproofing sheet by heat and torch in domestic construction field. However, the problem of waterproofing have constantly happened due to air pocket condition and defect of joint part in waterproofing construction. Therefore, in this study, we would like to analyze the field application as testing in side of materials and construction method of self adhesion butyl rubber sheet and study of the materials performance.

  • PDF

Physicochemical Changes in UV-Exposed Low-Density Polyethylene Films

  • Salem, M.A.;Farouk, H.;Kashif, I.
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.168-173
    • /
    • 2002
  • Unstabilized low-density polyethylene (LDPE) films and films formulated with hindered amine light stabilizer (HALS) were exposed to UV-radiation; and the physicochemical changes during photooxidation processes have been investigated using tensile, FTIR spectre-photometric and thermal analytical (DSC) techniques. The dependence of tensile properties (elongation- and stress-at-break), carboxyl index and heat of fusion on UV-irradiation time have been discussed. The use of HALS is found to be effective in maintaining the UV-mechanical properties of the LDPE films. The experimental results showed that there exists no correlation between mechanical properties and carbonyl index, whereas crystallinity correlates well with carbonyl index in unstabilized and stabilized films for irradiation times greater than 100 h. The rate of formation of carbonyl groups is found to be dependent on UV exposure time. Crystallinity of the film samples is strongly influenced by both exposure time and presence of HALS.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Effects of Heat Shock Treatment on Enzymatic Proteolysis for LC-MS/MS Quantitative Proteome Analysis

  • Arul, Albert-Baskar;Han, Na-Young;Jang, Young-Su;Kim, Hyojin;Kim, Hwan-Mook;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • 제7권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Various efforts have been developed to improve sample preparation steps, which strongly depend on hands-on processes for accurate and sensitive quantitative proteome analysis. In this study, we carried out heating the sample prior to trypsin digestion using an instrument to improve the tryptic digestion process. The heat shock generated by the system efficiently denatured proteins in the sample and increased the reproducibility in quantitative proteomics based on peptide abundance measurements. To demonstrate the effectiveness of the protocol, three cell lines (A human lung cancer cell line (A549), a human embryonic kidney cell line (HEK293T), and a human colorectal cancer cell line (HCT-116)) were selected and the effect of heat shock was compared to that of normal tryptic digestion processes. The tryptic digests were desalted and analysed by LC-MS/MS, the results showed 57 and 36% increase in the number of identified unique peptides and proteins, respectively, than conventional digestion. Heat shock treated samples showed higher numbers of shorter peptides and peptides with low inter-sample variation among triplicate runs. Quantitative LC-MS/MS analysis of heat shock treated sample yielded peptides with smaller relative error percentage for the triplicate run when the peak areas were compared. Exposure of heat-shock to proteomic samples prior to proteolysis in conventional digestion process can increase the digestion efficiency of trypsin resulting in production of increased number of peptides eventually leading to higher proteome coverage.

한약(韓藥)의 기미(氣味)가 한열자극(寒熱刺戟)을 받은 생쥐의 혈중(血中) corticosterone에 미치는 효과(效果) (Effects of Taste and Quality of Drugs on the Plasma Corticosterone Level in Mice exposed to Heat and Cold Stress)

  • 남여정;이태희
    • 대한한의학방제학회지
    • /
    • 제10권1호
    • /
    • pp.157-167
    • /
    • 2002
  • This study was performed to investigate what effect the taste and quality of drugs would have on the cold and heat mechanisms of human body. We administered Hwangryeunhaedok-tang composed of bitter-tasted, cold-qualified drugs and Gungangbuza-tang composed of spice-tasted. hot-qualified drugs, respectively to the mice 1 hr before exposure to heat stress or cold stress. Plasma corticosterone level of mice was measured. The results were as follows: 1. The elevated corticosterone level in the mice exposed to heat stress was significantly decreased after administration of Gungangbuza-tang but there was no decrease after administration of Hwangryeunhaedok-tang. 2. The elevated corticosterone level in the mice exposed to cold stress was significantly decreased after administration of Hwangryeunhaedok-tang but there was mild decrease after administration of Gungangbuza-tang. 3. When the doses, 3g/kg and 1g/kg were administerd to mice exposed to heat stress. both dose showed significant decrease of corticosterone level and the dose. 3g/kg was more effective. However, in the mice exposed to cold stress, the dose, 3g/kg showed mild decrease and 1g/kg showed significant decrease. These data suggested that HW decreased the plasma corticosterone level in the mice exposed to cold stress and GB also decreased the plasma corticosterone level in the mice exposed to heat stress. In conclusion, our study revealed that the taste and quality of drugs controled the cold and heat mechanism of human body.

  • PDF

A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

  • Liu, Fan;Celi, Pietro;Chauhan, Surinder Singh;Cottrell, Jeremy James;Leury, Brian Joseph;Dunshea, Frank Rowland
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권2호
    • /
    • pp.263-269
    • /
    • 2018
  • Objective: Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods: A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; $20^{\circ}C$, 45% humidity) or HS ($35^{\circ}C$, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results: Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet${\times}$temperature) the loss of blood $CO_2$ partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet${\times}$temperature). Conclusion: A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

Measurement of Airborne Particles and Volatile Organic Compounds Produced During the Heat Treatment Process in Manufacturing Welding Materials

  • Myoungho Lee;Sungyo Jung;Geonho Do;Yeram Yang;Jongsu Kim;Chungsik Yoon
    • Safety and Health at Work
    • /
    • 제14권2호
    • /
    • pp.215-221
    • /
    • 2023
  • Background: There is little information about the airborne hazardous agents released during the heat treatment when manufacturing a welding material. This study aimed to evaluate the airborne hazardous agents generated at welding material manufacturing sites through area sampling. Methods: concentration of airborne particles was measured using a scanning mobility particle sizer and optical particle sizer. Total suspended particles (TSP) and respirable dust samples were collected on polyvinyl chloride filters and weighed to measure the mass concentrations. Volatile organic compounds and heavy metals were analyzed using a gas chromatography mass spectrometer and inductively coupled plasma mass spectrometer, respectively. Results: The average mass concentration of TSP was 683.1±677.4 ㎍/m3, with respirable dust accounting for 38.6% of the TSP. The average concentration of the airborne particles less than 10 ㎛ in diameter was 11.2-22.8×104 particles/cm3, and the average number of the particles with a diameter of 10-100 nm was approximately 78-86% of the total measured particles (<10 ㎛). In the case of volatile organic compounds, the heat treatment process concentration was significantly higher (p < 0.05) during combustion than during cooling. The airborne heavy metal concentrations differed depending on the materials used for heat treatment. The content of heavy metals in the airborne particles was approximately 32.6%. Conclusions: Nanoparticle exposure increased as the number of particles in the air around the heat treatment process increases, and the ratio of heavy metals in dust generated after the heat treatment process is high, which may adversely affect workers' health.

A Study on the Safety Measures for Thermal Diseases, Focusing on the Cases of Disaster by Construction Industry

  • Hye-Ryeong O;Won-Mo GAL;Ok-Nam Park;Mi-Hwa JANG;Seok-Soon KWO;Seung-Hyuck PARK
    • 웰빙융합연구
    • /
    • 제7권2호
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: Construction sites are currently facing a socialization problem as the incidence of thermal disease-related disasters increases due to summer heat waves, exacerbated by factors like the concentration of middle-aged and older workers and global warming. The reason why construction sites are particularly vulnerable to heat waves is that there are many outdoor work, which is the peculiarity of the construction industry, and most of the construction workers are elderly. This study analyzes disaster statistics of workers at construction sites for five years to investigate the occurrence of thermal diseases and analyze factors through disaster cases to provide basic data for future disasters to be reduced. Research design, data, and methodology: According to the Construction Workers' Mutual Aid Association, as of June, more than 60% of the construction workers working in the field were in their 50s and 60s. More than 24% are in their 60s and older. Thermal diseases caused by heat waves occur when exposed to high heat or strong sunlight for a long time, accompanied by headaches and dizziness. The problem is that many elderly people have underlying diseases, so if they lose consciousness, they cannot easily recover and are likely to die. Results: According to industrial accident statistics, 182 people were injured by heat-related diseases in the summer from 2016 to 2021, of which 29 died. In particular, in the construction industry, which has a lot of outdoor work, 87 people were injured and 20 people died. Conclusions: In order to prevent heat diseases caused by outdoor work, it is emphasized that exposure time is controlled, and sufficient rest and hydration are essential. Rest, water, and shade are in line with the three principles.

PTT BCF의 분산염료 염색에서 첨가제의 내열성 및 내광성 효과 (Thermal and UV Resistance of Polytrimethylene Terephthalate Bulked Continuous Filament (PTT BCF) and The Influence of Additive on Those)

  • 문창헌;이헌
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.527-536
    • /
    • 2019
  • 본 연구에서는 PTT BCF의 열과 자외선에 의한 취화거동과 분산염료의 열 및 자외선에 의한 퇴색거동을 연구하였다. 염료의 퇴색과 PTT BCF의 취화를 억제시킬 수 있는 첨가제를 방사과정에서 첨가하여 그 효과를 알아보았다. PTT BCF의 열처리 이후 취화거동은 열처리 온도와 노출시간이 증가할수록 취화현상이 가속화되어 시료의 인장강도 저하가 두드러졌다. 시료가 120℃까지의 온도에 노출하였을 때는 인장강도의 저하가 크지 않으나 그 이상의 온도인 150℃에서는 노출시간에 비례하여 급격한 인장강도 저하를 보였다. 열에 의한 취화는 산화방지 첨가제가 높은 온도에서는 그 효과가 안정적이지 않으며 산화반응이 급격하였다. 열처리 이후 시료의 퇴색은 열처리 온도가 증가할수록 K/S 값이 감소하였고, 노출시킨 시간이 증가할수록 퇴색되는 경향이 강하게 나타났다. 특히 고온으로 갈수록 열에 의한 퇴색 거동이 급격하게 증가하였으며 열퇴색 억제제가 그 효과를 발휘하지 못했다. 자외선 조사 이후 PTT BCF의 취화거동과 퇴색거동을 인장강도 변화와 K/S 값 변화로 각각 살펴보았다. 자외선 조사에 따른 취화는 열처리 시의 취화보다 더 크게 나타났으며, 특히 장시간 동안 노출된 경우 인장강도의 저하가 급격하였다. 또한 K/S 값의 변화 역시 온도와 노출시간이 증가할수록 퇴색거동이 강하게 나타났다. 시료의 취화거동과 퇴색거동은 자외선 조사의 경우가 더 가혹하게 나타났다. 열 및 자외선 모두가 분산염료의 퇴색에 영향을 주며, 자외선 조사는 같은 온도에서 노출했을 때에 비해 아주 높은 퇴색 속도를 보였다. 결론적으로 열과 자외선에 의한 퇴색과 취화는 특정 산화방지제와 자외선흡수제에 의해 다소 억제되어 저하되었다.

사육환경에 따른 이매패류 (Crassostrea gigas, Mytilus galloprovincialis)의 외부형질 성장과 Heat Shock Protein 70 유전자 발현 (Expression of the Heat Shock Protein 70 Gene and External Developmental Traits of Two Bivalvia Species, Crassostrea gigas and Mytilus galloprovincialis, under Aquaculture Environments)

  • 김원석;박기연;김종규;곽인실
    • 생태와환경
    • /
    • 제49권1호
    • /
    • pp.22-30
    • /
    • 2016
  • 연안의 다양한 환경변화는 서식 생물에 영향을 미치고, 양식장의 생산량 감소와 연결되고 있는 추세이다. 본 연구에서는 가막만의 대표적인 양식종인 패류 C. gigas와 M. galloprovincialis의 서식환경에 따른 스트레스 정도를 파악하고자 하였다. 이를 위해, 각 종의 체중량, 각장과 각고, 양식장 사육기간을 조사하고, 각 종의 계통학적 HSP 70 sequence를 비교한 후, 각 종의 HSP 70 유전자 발현을 분석하였다. 그 결과, C. gigas의 체중량, 각장과 각고는 C2 양식장이 높게 나타났으나, 양식장 환경 사육기간과 HSP 70 유전자 발현은 C3 양식장이 가장 높았다. M. galloprovincialis는 M1 양식장의 체중량이 높게 나타났으며 각장과 각고, 사육기간은 M2와 유사하였으나, HSP 70 유전자 발현은 M2 양식장이 통계적으로 유의한 수준으로 높게 나타났다. 그리고 C. gigas와 M. galloprovincialis의 HSP 70 sequence 분석을 통해서 다른 해양 종들과 높은 유사성이 있음을 확인하였다. 이 결과는 서식환경에 따라 생물의 외부적 형질뿐만 아니라 내부적 스트레스를 HSP 70 유전자 발현을 통하여 파악할 수 있으며 HSP 70은 외부환경 스트레스를 평가하는 지표 유전자로서 활용할 수 있을 것이다.