• 제목/요약/키워드: heat exchangers

검색결과 853건 처리시간 0.027초

액체 제습식 냉방 사이클의 최적화 (Optimization of Liquid Desiccant Cooling Cycle)

  • 김선창;김영률;이상재;전동순;최장현;권혁민;이창준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.673-678
    • /
    • 2009
  • This paper presents the optimization process of liquid desiccant cooling cycle using LiCl aqueous solution as a working fluid. Operating conditions and design factors for heat exchangers were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of $dT_{hw}$ on system performances was also examined. As $dT_{hw}$ increases, the cooling capacity increases and COP decreases.

  • PDF

Recent Insights from the International Common-Cause Failure Data Exchange Project

  • Kreuser, Albert;Johanson, Gunnar
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.327-334
    • /
    • 2017
  • Common-cause failure (CCF) events can significantly impact the availability of safety systems of nuclear power plants. For this reason, the International Common Cause Data Exchange (ICDE) project was initiated by several countries in 1994. Since 1997 it has been operated within the Organisation for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) framework and has successfully been operated over six consecutive terms (the current term being 2015-2017). The ICDE project allows multiple countries to collaborate and exchange CCF data to enhance the quality of risk analyses, which include CCF modeling. As CCF events are typically rare, most countries do not experience enough CCF events to perform meaningful analyses. Data combined from several countries, however, have yielded sufficient data for more rigorous analyses. The ICDE project has meanwhile published 11 reports on the collection and analysis of CCF events of specific component types (centrifugal pumps, emergency diesel generators, motor operated valves, safety and relief valves, check valves, circuit breakers, level measurement, control rod drive assemblies, and heat exchangers) and two topical reports. This paper presents recent activities and lessons learnt from the data collection and the results of topical analysis on emergency diesel generator CCF impacting entire exposed population.

Alloy 617 모재와 용접부재의 저사이클피로 거동에 관한 실험적 고찰 (An Experimental Investigation on Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints)

  • 최필호;김선진;김우곤;김민환
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.115-121
    • /
    • 2014
  • Alloy 617 is the one of the leading candidate materials for intermediate heat exchangers(IHX) of a very high temperature reactor(VHTR) system. Some of the components are joined by many welding techniques and therefore the welded joints are inevitable in the construction of systems. In the present paper, the low cycle fatigue(LCF) behaviors of Alloy 617 base metal(BM) and the gas tungsten arc welded (GTAWed) weld joints(WJ) are investigated experimentally under strain controlled LCF tests. Fully axial total-strain controlled tests have been conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The weld joints have shown a lower fatigue lives compared with base metals at all the testing conditions. The weld joints have shown a higher cyclic stress response behavior than base metal. Both BM and WJ exhibited cyclic strain hardening behavior, depending on the total strain range. In addition, the strain-life parameters for BM and WJ were determined, based on Coffin-Manson equations.

미세 수평 사각 유로 내에서의 비등 유동 압력강하에 관한 실험적 연구 (An Experimental Study on Pressure Drop of Boiling Flow within Horizontal Rectangular Channels with Small Heights)

  • 이상용;이한주
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1219-1226
    • /
    • 2001
  • Pressure drops were measured for the flow boiling process within horizontal rectangular channels. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2mm while the channel width being fixed to 20mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200kg/㎡s and the channel walls were uniformly heated up to 15kW/㎡. The quality range covers from 0.15 to 0.75. The present experimental conditions coincide with the operating conditions of compact heat exchangers in which the liquid and gas flows are laminar and turbulent. The measured results were well represented by the two-phase frictional multiplier of Lee (2001) which has been developed for air-water two-phase flows within the deviation of $\pm$20%.

고온 이산화탄소 분위기에서 316 L 스테인리스강의 부식 거동 (High-Temperature Corrosion Behavior of 316 L Stainless Steel in Carbon Dioxide Environment)

  • 채호병;서석호;정용찬;이수열
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.552-556
    • /
    • 2017
  • Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to $800^{\circ}C$ during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of $500-700^{\circ}C$ in the carbon dioxide environment, the corrosion resistance at $800^{\circ}C$ was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.

저온 열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석 (Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source)

  • 김경훈;고형종;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.109-117
    • /
    • 2011
  • Since the thermal performance of cycles for use of low-temperature source is low if a pure working fluid is used, the cycles using ammonia-water binary mixture as a working fluid has attracted much attention over past two decades. Recently, several commercial power plants using Kalina cycles have been built and being operated successfully. In this work thermodynamic performance of Kalina cycles using ammonia-water mixture as a working fluid is investigated for the purpose of extracting maximum power from low-temperature energy source. Special attention is paid to the effect of system parameters such as concentration of ammonia and turbine inlet pressure on the characteristics of the system. Results show that the system performance is influenced sensitively by the ammonia concentration, and the role of the performance of heat exchangers is crucial.

액체 제습식 냉방 시스템의 최적 설계 (Optimization Design of Liquid Desiccant Cooling System)

  • 전동순;이상재;김선창;김영률;이창준
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.419-428
    • /
    • 2010
  • This paper presents the optimization process of liquid desiccant cooling system using LiCl aqueous solution as a working fluid. Operating conditions(mass flow rate, conditioner outlet concentration, difference concentration) and design factors for heat exchangers(difference temperature of the district heating water, leaving temperature difference of the conditioner, leaving temperature difference of the regenerator, air temperature difference of the conditioner, air temperature difference of the regenerator) were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of difference temperature of hot water on system performances was also examined. As difference temperature of the district heating water increases, the cooling capacity increases and COP decreases.

Reverse Brayton 사이클과 Claude 사이클 기반 LNG 재액화 공정의 동특성 운전성능 비교 (Comparison of Dynamic Operation Performance of LNG Reliquefaction Processes based on Reverse Brayton Cycle and Claude Cycle)

  • 신영기;서정아;이윤표
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.775-780
    • /
    • 2008
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

헤더-채널 분기관에서의 헤더 입구 형상이 2상 유동 분배에 미치는 영향에 대한 실험적 연구 (Effect of Inlet Geometries on the Two-Phase Flow Distribution at Header-Channel Junction)

  • 이준경
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.324-330
    • /
    • 2013
  • The main objective of this work is to experimentally investigate the effect of inlet geometries on the distribution of two-phase annular flow at header-channel junctions simulating the corresponding parts of compact heat exchangers. The cross-section of the header and the channels were fixed to $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Experiments were performed for the mass flux and the mass quality ranges of $30{\sim}140kg/m^2s$ and 0.3~0.7, respectively. Air and water were used as the test fluids. Three different inlet geometries of the header were tested:no restriction (case A), a single 8 mm hole at the center (case B), and nine 2 mm holes around the center (case C) at the inlet, respectively. The tendencies of the two-phase flow distribution were different, in each case. For cases B and C (flow resistance exists), more uniform flow distribution results were seen, compared with case A(no flow resistance), due to the flow pattern change to mist flow from annular flow at the inlet, and the flow recirculation near the end plate of the header.

2 모듈 스택을 이용한 SOFC 시스템 운전결과 (Operation Results of the SOFC System Using 2 Sub-Module Stacks)

  • 이태희
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.