• Title/Summary/Keyword: heat engine

Search Result 1,173, Processing Time 0.031 seconds

Numerical Investigation of Flowing Process for Regenerative Beat Exchanger of a Gas Turbine Engine (가스터빈 리제너레이토 내부유동에 관한 수치해석적 연구)

  • Kim Soo Yong;Kovalevsky Valeri P;Goldenberg Victor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.109-121
    • /
    • 2004
  • A distributed nonlinear mathematical model for investigation of regenerative heat exchangers of both a continuous and periodic operation is described in the paper. The non-iterative numerical integration scheme for conjugate unsteady heat exchange problem of one dimensional flows and two dimensional matrix wall conductivity is developed. Case study of a regenerative heat exchanger with a rotary ceramic matrix is presented. The range of optimum rotation rates of the regenerator providing the greatest calorific efficiency is determined.

Analysis of The Operation of a Low Temperature Differential Model Stirling Engines (저온도차 모형 스털링 엔진의 작동 해석)

  • Won Min Young;Jung Pyung Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.519-525
    • /
    • 2005
  • The operation of a low temperature differential model stirling engine is tested and analyzed by Simple analysis model. The heat transfer coefficients are required for Simple analysis, and the coefficients are determined by coinciding the P-V diagram of analysis to the diagram of experiment. The results show a good agreement. However the heat transfer coefficients are quite high by comparison with the ordinary forced convective heat transfer cases.

The Research about Engine Speed change Effect on HCCI Engine Combustion by Numerical Analysis (엔진회전속도의 변화가 HCCI엔진연소에 미치는 영향에 관한 수치해석 연구)

  • Lim, Ock-Taeck
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.126-133
    • /
    • 2011
  • In HCCI Engine, combustion is affected by change of compression speed corresponding to engine speed. The purpose of this study is to investigate the mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was shown. And then, in order to clarify the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix. In results, as engine speed increased, in-cylinder gas temperature and pressure at ignition start increased. And ignition start timing was retarded and combustion duration was lengthened on crank angle basis. On time basis, ignition start timing was advanced and combustion duration was shortened. High engine speed showed higher robustness to change of initial temperature than low engine speed. Because of its high robustness, selecting high engine speed was efficient for keeping stable operation in real engine which include variation of initial temperature by various factors. The variation of engine speed did not change the reaction path. But, as engine speed increased, the temperature that each elementary reaction would be active became high and reaction speed quicken. Rising the in-cylinder gas temperature of combustion start was caused by these gaps of temperature.

A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities (오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구)

  • Kim, Chung-Kyun;Lee, Byoung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring (디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성)

  • Jang, Jeong-Hwan;Kim, Jung-Hoon;Kim, Chang-Hee;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation (Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

A Study on the Characteristics of Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 배기 배출형 특성에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.481-489
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristics of fuel economy combustion and exhaust emissions have been experimentally investigated by a four-cylinder four cycle indirect injection water-cooled and marine diesel engine operating at several loads and speeds. in order to reduce the soot contents in the recirculated exhaust gas to intake system of the engine a novel diesel soot removal system with a cylinder-type scrubber which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured for the experiment system The experiments in this study are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions, The brake specific fuel consumption rate is slightly fluctuated with EGR in the range of experimental conditions, The maximum value of premixed combustion for the rate of heat release is decreased with EGR at engine load 25% and the ignition is slightly delayed with EGR at engine load 100% NOx emissions are markedly decreased with EGR especially at high loads while soot emissions are increased as the EGR rate rises.

  • PDF

LPi Engine Combustion and Emission Characteristics Depending on LPG Properties from Various Fuel Supply Types by Using DC Motor Type Fuel Pump (DC모터형 연료펌프를 이용한 연료공급방식별 LPG성상에 따른 LPi엔진 연소 및 배출가스 특성)

  • Kim, Ju-Won;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.907-914
    • /
    • 2008
  • This study is mainly focused on the assessment of return, semi return, and returnless fuel supply system for an LPi engine. In order to compare the return type with returnless one with various LPG blends, combustion analysis and cyclic THC emission characteristic were tested at the part load operating condition of the LPi engine. Considering heat balance of each fuel supply systems, pressure and temperature increment of return type showed lower at the fuel rail during idle warm up operation. However, those of returnless type at LPG tank maintained stable and slow increment because the heat transfer from the LPi engine was minimized. Finally, hot restartability of each fuel supply systems were evaluated with the various LPG blends and fuel temperatures. As a result, semi return type has equivalent performance to return type considering combustion and emission characteristic, hot restartability performance for LPi engine.

Thermal Characteristics of Imaging Device Exposed to High Temperature and High Pressure (고온고압 환경에 노출된 영상장치 내열특성)

  • Shin, Jaeik;Ahn, Dongchan;Cho, Jaehan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1192-1195
    • /
    • 2017
  • This paper describes the heat resistance characteristics of the imaging device installed in behind the engine due to monitoring the engine condition, and this paper includes the introduction and development of the imaging probe. Because the imaging device which is at the rear end of the engine is exposed to a high temperature and high pressure, the stability of the device should be secured by changing the device shape and supplying cooling water. The imaging probe in ADD engine test facility is installed at the rear end of the engine, and it is designed by reflecting the heat resistance characteristics to ensure the stability of the device.

  • PDF

Numerical Study and Firing Test of a Liquid Rocket Engine Head with a Coolant Manifold (로켓엔진 헤드용 냉각 매니폴드의 해석 및 시험)

  • Park, Jinsoo;Choi, Jiseon;Yu, Isang;Ko, Youngsung;Kim, Sunjin;Shin, Dongsun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1021-1025
    • /
    • 2017
  • Numerical heat/flow analysis was performed on a liquid rocket engine head with the cooling water manifold to ensure the durability of a ground test facility for heat exchanger. Through these studies, the shapes of the injector and the flow path were determined and applied to the head of the engine under development. Firing tests were conducted to verify the designed coolant manifold and no thermal damage was found on the engine-head-face. Comparing the combustion test results with the numerical analysis, the outlet temperature of coolant showed a difference of about $15^{\circ}C$. This trend is reasonable considering existence of LOX manifold, thermal barrier coating, and the actual location of flame.

  • PDF