• Title/Summary/Keyword: heat engine

Search Result 1,173, Processing Time 0.026 seconds

Characteristics of Heat Transfer for Small-size Marine Diesel Engine (소형박용 디젤엔진의 전열특성)

  • 최준섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.36-42
    • /
    • 1996
  • Analysis of heat transfer on small-size Diesel engine is required for the development of high performance and efficiency engine. This basic study aims to establish heat transfer technique for marine Diesel engine. The main results from this study are as follows : 1) Overall engine heat transfer correlation of Re-Nu. 2) Radiant heat flux as fraction of total heat flux over the load range of several different Diesel engine. 3) Characteristics of heating curves on piston, cylinder liner and head. 4) Surface heat flux versus injection timing.

  • PDF

A study on the heat release rate pattern variation according to the change of operating conditions in pre-combution chamber type diesel engine (예연소실식 디젤기관의 운전조건변화에 따른 열발생률 형태변동에 관한 고찰)

  • 이진우;최재성;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.31-44
    • /
    • 1987
  • Nowadays, the problems of energy and environmental pollution become serious day by day and the diesel engine, which has been proved to be superior to gasoline engine with respect to fuel consumption and ecological problems of exhaust gas, has been adopted widely for various purposes from the marine diesel engine and the dynamo engine to all kinds of engine on land. Therefore, extensive parametric studies on combustion of diesel engine should be done for its desing and improvement. To predict the behavior of diesel engien according to variable operating conditions by means of cycle simulation, the reasonable pattern of heat release rate has to be asumed. But it is necessary to know the actual variation of heat release rate in order to assume the reasonable pattern of heat release rate according to the actual operating conditions. In this paper, on a high speed small bore diesel engine with pre-combustion chamber, experimental investigations were carried out to determine the relationship between the heat release pattern and parameters such as engine load and speed. And also, the theoretical investigations about the performance variations of the above diesel engine according to the predicted pattern of heat release rate variation were performed. From the above observations, it may be said that the Fanboro indicator, which was used to get the cylinder pressure, can be used to estimate a reasonable pattern of heat release rate and it is confirmed that the pattern of heat release rate for the pre-combustion type engine is different from that of the direct injection type engine.

  • PDF

A Method for Detecting Engine Oil Deterioration using Heat Transfer (열전달을 이용한 엔진오일 열화 감지 방법)

  • Kim, Hyung-Pyo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.139-143
    • /
    • 2004
  • This paper presents a method that the engine oil condition is detected using a natural convection heat transfer in a engine oil. A sensor circuit maintains a constant temperature difference between a heat plate and engine oil for detecting a natural convection heat transfer rate on the constant temperature. The natural convection heat transfer rate is measured by a current through the heat plate of the sensor circuit. The sensor is tested by a fresh oil. 6,000 km and 10,000 km driven oil in the oil temperature range from $20^{\circ}C$ to $100^{\circ}C$. In the experimental result, when the current through the heat plate is altered by variation of a engine oil temperature and flows driven oil more than fresh oil, the sensor could inform a engine oil deterioration to a car driver.

Advanced One-zone Heat Release Analysis for IDI Diesel Engine (IDI 디젤기관의 개선된 단일영역 열발생량 계산)

  • Kim Gyu-Bo;Jeon Choung-Hwan;Chang Young-Jun;Lee Suk-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1101-1110
    • /
    • 2004
  • An one-zone heat release analysis was applied to a 4 cylinder indirect injection diesel engine. The objective of the study is to calculate heat release accurately considering the effect of specific heat ratio. heat transfer and crevice model and to find out combustion characteristics of an indirect diesel engine considering the effect of the pressures in main and swirl chambers. Especially specific heat ratio indicating combustion characteristics is adapted. instead of that indicating matter properties, which has been used in former studies Moreover by adaption of blowby model, cylinder gas mass became accurately calculated. Therefore, with ideal gas equation, calculating cylinder gas temperature, it was found to affect heat transfer loss and heat release. Determining heat transfer constants $C_1$. $C_2$ as 0.6 respectively. the integrated gross heat release values were predicted well for the measured value at various engine speed, full load operating conditions. The curve of heat release rate was similar to SI engine rather than DI engine. That is originated from that swirl chamber reduce an instant combustion which occurs in DI engine due to ignition delay on early stage of combustion.

Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space (좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가)

  • Kim, Sung-Kwang;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

Development of a Highly Efficient Boiler System Using a Diesel Engine

  • Lee, D.-H;Lee, D.-Y;Jo, M.-C;Cho, H.-N;Kim, Y.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.367-375
    • /
    • 2004
  • We have developed a highly efficient boiler system using the 2,600cc Diesel engine. In this system, the co-generation concept is utilized in that the electric power is produced by the generator connected to the engine, and waste heat is recovered from both the exhaust gases and the engine itself by the shell-and-tube heat exchangers. The heat exchanger connected to the engine outlet is specially designed such that it not only recovers waste heat effectively from the exhaust gases, but significantly reduces an engine noise. It is found that the total efficiency(thermal efficiency plus electric power generation efficiency) of this system reaches maximum 96.3% which is about 15% higher than the typical Diesel engine boiler system currently being used worldwide.

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

Effect of compression ratio on the heat dissipation of engine (압축비가 기관의 방열에 미치는 영향)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.89-93
    • /
    • 1983
  • This paper describes on experimental investigation into the heat dissipation of Diesel engine, placing emphasis on the variations of compression ratio and cooling water temperature. The engine used for this test was a vertical single-cylinder four-cycle type, having a direct injection. Engine performance and heat transfer rates was tested under the compression ratio 14.3 and 17.4. In this study, the results showed that output and transfer rates of engine decrease in accordance with the decrease of compression ratio. The effect of cooling water temperature and injection delay of fuel on the heat dissipation brings about the decrease of heat transfer rates from cylinder to cooling water.

  • PDF

A Study on Improvement of Engine Cooling System (엔진 냉각 시스템 개선에 관한 연구)

  • Kim, M.H.;Oh, B.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF

An Experimental Study on the Characteristics of Metal Temperature and Heat Rejection to Coolant of Gasoline Engine (가솔린엔진의 금속면온도 및 냉각수로의 전열 특성에 관한 실험적 연구)

  • 오창석;유택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.35-41
    • /
    • 2001
  • In recent applications, map controlled thermostat has been adapted to optimize engine cooling system and vehicle cooling system. First of all, this strategy is focused on improving fuel consumption rate and reducing emissions, especially unburned hydrocarbon. The object can be obtained through controlling engine metal temperature by varying engine coolant temperature with engine load and speed. To achieve this goal, it is necessary to understand the characteristics of engine metal temperature and heat rejection rate to coolant. From the results of tested engines, it is obvious that fuel consumption rate has more dominant effect on engine metal temperatures than the corresponding engine power does. Also, Re-Nu relation which shows heat rejection rate to coolant in function of air-fuel mixture and engine specifications has been studied. Also, the empirical Re-Nu relation at full loaded engine was developed.

  • PDF