• Title/Summary/Keyword: heat control

Search Result 3,675, Processing Time 0.03 seconds

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

A Study on Control Method of Thermal Storage Tank for Varying Thermal Load in Heat Pump Water Heater (열펌프 온수기의 부하 대응 축열조 제어에 관한 연구)

  • Nam, Hyun-Kyu;Bai, Cheol-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.330-335
    • /
    • 2012
  • A characteristic behavior of the thermal storage tank for varying thermal load in heat pump water heater was studied. The control method was suggested and applied. By measuring the temperature within the storage tank, the heat pump was ON/OFF controlled. The appropriate measuring position and the size of heat exchanger gives the minimized power consumption of heat pump. As the length of heat exchanger increases, the temperature measuring position goes down of the storage tank and the power consumption increases.

The Effects of Heat Treatment on the Fatigue Life and Welding Residual Stress of Welded Carbon Steel Plates (탄소강 후판용접부의 피로수명 및 잔류응력에 미치는 열처리 영향)

  • An, I.T.;Kim, W.T.;Jo, J.R.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The effects of heat treatment on the fatigue life and welding residual stress of welded plates were investigated in this study. The plates were welded by flux cored arc welding process, and post weld heat treated at $600^{\circ}C$ for 1 hour. The residual stresses of welded plates before and after post weld heat treatment were measured by hole drilling method. To measure the fatigue life of welded plates, low cycle fatigue tests under strain control and high cycle fatigue tests under load control were performed respectively, by using cylindrical specimens containing weld metal and heat affected zone. The obtained result shows that the post weld heat treatment reduces the residual stress, and resultantly changes the fatigue life of welded plate. Goodman diagrammatic analysis has also been performed to study the effect of post weld heat treatment on the high cycle fatigue life.

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.

Dynamics Modeling of a Gas Engine-Driven Heat Pump in Cooling Mode

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Jang Cheol-Yong;Cho Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.278-285
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for design of control algorithm. The dynamics modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fans, coolant three-way valves and liquid injection valves were PI or P controlled. The simulation results were found to be realistic enough to apply for control algorithm design. The model can be applied to build a virtual real-time GHP system so that it interfaces with a real controller in purpose of prototyping control algorithm.

The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS (지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구)

  • Hong, Seong-Ki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

Control of Water Heat Recovery Chiller Using Split Condenser Templifier Application

  • Cho, Haeng-Muk;Mahmud, Iqbal
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • By using the heat recovery of water-cooled chillers, it is possible to reduce the energy operating costs positively and at the same time it could fulfill the heating re-heat air conditioning system as well as the hot water requirements. Basically templifiers are designed to economically to turn the waste heat into useful heat. Waste heat is extracted from a fluid stream by cooling it in the evaporator, the compressor amplifies the temperature of the heat and the condenser delivers the heat to heating loads such as space heating, kitchens and domestic hot water. Design of higher water temperature requirements and split condenser heat recovery chiller system (using of templifiers) produced hotter condenser water approximately up to $60^{\circ}C$ and control the entire heat recovery system.

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System (중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구)

  • Jae-Yeob Song;Byung-Cheon Ahn
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

Lipid Metabolism and Peroxidation in Broiler Chicks under Chronic Heat Stress

  • Shim, K.S.;Hwang, K.T.;Son, M.W.;Park, Garng H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1206-1211
    • /
    • 2006
  • The effects of taurine supplementation on growth performance, serum and liver concentrations of lipid, fatty acid composition and lipid peroxidation in the livers of broilers under chronic heat exposure conditions were investigated. The chicks with a similar body weight were equally assigned to one of three controlled-environment chambers. The brolier chicks, which were kept at $34^{\circ}C$ were fed either with a control diet or the control diet supplemented with 0.8% taurine, whereas broiler chicks kept at $22^{\circ}C$ were fed a control diet. Both of the BW and BW gains of broilers maintained at a temperature of $34^{\circ}C$ were significantly lower than those of the control group, which was maintained at a temperature of $22^{\circ}C$ (p<0.05). However, taurine addition in the diet of birds submitted to heat stress siginficantly improved BW gain (p<0.05). The feed intake of chicks declined with increases in temperature. The relative liver and gall bladder weights of chicks fed the control diet and maintained at $34^{\circ}C$ were significantly lower than those measured in the control birds (p<0.05). However, dietary taurine was found to compensate for these reductions in liver and gall bladder weights. Relative weights of abdominal fat did not differ significantly among the three groups. Serum triglyceride concentrations were significantly lower in the chicks fed the control diet and maintained at $34^{\circ}C$ compare to those measured in the chicks fed the control diet at $22^{\circ}C$ (p<0.05). Heat stress resulted in a significant reduction in total lipid and triglyceride levels, but also increased the levels of total cholesterol in the liver (p<0.05). However, dietary taurine supplementation under the heat stress condition resulted in the recovery, to control levels, of serum triglyceride concentrations, as well as the amounts of total lipids, triglycerides, and cholesterol in the liver. The livers of chicks fed on taurine diets at $34^{\circ}C$ showed significantly higher proportions of C14:0, C16:1, C18:1, C18:2, and 20:3, and lower C18:0 and C20:4 proportions than those of chicks fed on control diets at the same temperature (p<0.05). The total levels of saturated fatty acids decreased, but monounsaturated fatty acids and unsaturated fatty acid levels increased in chicks fed the taurine diet, as compared to chicks fed the control diet at $34^{\circ}C$ (p<0.05). Peroxidizability indices were significantly lower in the heat-exposed chicks fed the taurine diet than in the non-taurine heat-exposed groups (p<0.05). In conclusion, dietary taurine results in an increase in the growth performances of chicks under heat stress conditions via improvements in lipid absorption and metabolism, as well as an induced reduction in lipid peroxidation.