• 제목/요약/키워드: heat conservative

검색결과 106건 처리시간 0.025초

원전 밀림관 열성층의 3 차원 수치해석 (3-Dimensional Numerical Analysis for Thermal Stratification in Surgeline in Nuclear Power Plant)

  • 김영종;김만원;고은미
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.729-734
    • /
    • 2008
  • A thermal stratification may occur in the horizontal parts of the surge line during operating transients of the pressurizer, which produces relatively high fatigue usage factor. Heat-up transient is the most severe case among the transient conditions. In this study, to study the relationship between the magnitude of thermal stratification and the length of vertical part of the surge line, some parametric fluid-structure interaction (FSI) analyses with different length variables of the vertical part of the surge line were performed for plant heat-up transient condition by using 3-dimensional numerical analysis. The conservativeness of the traditional finite element model for thermal stratification analysis based on the conservative assumption in the surge line was also discussed by comparison of the results of 3-dimensional transient FSI analysis of this study. Stresses calculated with 3-dimensional transient model were considerably reduced comparing with the traditional analysis.

  • PDF

근관치료 기구의 기계 형태적 특성과 이에 따른 임상적 영향 고찰 (Mechanical and geometric features of endodontic instruments and its clinical effect)

  • 김현철
    • Restorative Dentistry and Endodontics
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2011
  • 서론: 이 문헌의 목적은 Nickel-titanium (NiTi) 전동 파일의 기계적 형태적 양상과 이에 의한 임상적 연관성을 고찰하는 것이다. NiTi 전동 파일은 다양한 고유의 형태로 시장에 소개되었고 경쟁 상품에 비해서 근관 성형에 더 나은 능력을 가졌다고 주장하고 있다. 본론: 이 문헌에서는 NiTi 전동 파일의 형태(예. 팁, 테이퍼, helical angle 등)와 파일의 임상 적용 성과 사이의 가능한 상관관계를 다음과 같이 다룬다; - NiTi 전동 파일의 파절 양상 - 비활성 파일팁과 glide path - 파일 경사도와 임상 효과 - 파일 횡단면적과 임상 효과 - 열처리와 표면 특성 - Screw-in 효과와 치근 상아질의 유지 - Screw-in 효과를 줄이기 위한 고안 결론: 이상의 내용을 바탕으로, 임상가는 다양한 NiTi 전동 기구를 사용함에 있어 임상 상황에 적절한 장점을 고려하여 선택하고 사용할 수 있는 도움을 받을 수 있을 것이다.

피동 원자로건물 냉각계통 실험에 관한 수치적 연구 (Numerical Investigation on Experiment for Passive Containment Cooling System)

  • 하희운;서정수
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

조밀화된 사용후 핵연료 저장조에서의 국부 비등에 관한 연구 (A Study on the Local Boiling of the Consolidated Spent Fuel Storage Pool)

  • Lee, Chang-Ju;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.8-19
    • /
    • 1993
  • 강제순환 냉각상실사고시 조밀화된 저장계통의 사용후 핵연료에서 생성된 붕괴열의 제거를 확인하기 위한 자연순환 해석모델이 개발되었다 채택된 수치기법은 ADI방법에 근거하였다. 사용후 핵연료의 붕괴열 생성율은 ANS-79 붕괴열 모델에 따라 계산되었으며, 보수적인 붕괴열 생성량 입력을 위해 chopped sine곡선에 따른 비균일 표면열속이 가정되었다. 저장조내 국부비등의 발생 가능성을 조사하기 위해서 민감도분석이 수행되었으며, 이는 핵연료간 거리 비, 열 생성량 및 핵연료 봉 반지름 등의 여러 변수를 변경시킴으로서 이루어졌다. 이 모델의 적용결과는 적절한 냉각시간 후의 조밀화된 사용후 핵연료 다발을 통한 자연대류 유량이 안전하고 효과적인 방식으로 저장조의 온도준위를 조절할 수 있음을 보여주고 있으며, 또한 사용후 핵연료봉 재배치를 위한 냉각시간에 관한 허용기준이 얻어졌다.

  • PDF

Influence of autoclave sterilization procedures on the cyclic fatigue resistance of heat-treated nickel-titanium instruments: a systematic review

  • Silva, Emmanuel Joao Nogueira Leal;Zanon, Mayara;Hecksher, Fernanda;Belladonna, Felipe Goncalves;de Vasconcelos, Rafaela Andrade;da Silva Fidalgo, Tatiana Kelly
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.25.1-25.12
    • /
    • 2020
  • Objectives: This systematic review evaluated the influence of autoclave sterilization procedures on the cyclic fatigue resistance of heat-treated nickel-titanium (NiTi) instruments. Materials and Methods: A systematic search without restrictions was conducted in the following electronic databases: PubMed, Scopus, Web of Science, ScienceDirect, Cochrane, and Open Grey. The hand search was also performed in the main endodontic journals. The eligible studies were submitted to the methodological assessment and data extraction. Results: From 203 abstracts, a total of 10 articles matched the eligible criteria. After reading the full articles, 2 were excluded because of the absence of the heat-treated instruments in the experimental design and 3 due to the lack of a control group using heat-treated instruments without autoclave sterilization. From the 5 included studies, 1 presented a low risk of bias, 3 presented moderate and 1 high risk. It was observed heterogeneous findings in the included studies, with autoclave sterilization cycles increasing, decreasing or not affecting the cyclic fatigue life of heat-treated NiTi instruments. However, the retrieved studies evaluating the cyclic fatigue resistance of endodontic instruments presented different protocols and assessing outcomes, this variability makes the findings less comparable within and also between groups and preclude the establishment of an unbiased scientific evidence base. Conclusions: Considering the little scientific evidence and considerable risk of bias, it is still possible to conclude that autoclave sterilization procedures appear to influence the cyclic fatigue resistance of heat-treated NiTi instruments.

강제대류 아냉각비등에서 급격한 기포발생점의 예측 (Prediction of the Onset of Significant Void in Forced-Convection Subcooled Boiling)

  • 이상천;남상철
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.681-689
    • /
    • 1994
  • A model to predict the onset of significant void (OSV) in vertical flow between parallel plates has been developed. The model was compared to the experimental data of Whittle and Forgan (1967) and Dougherty et al. (1990), showing excellent agreement. The model was also compared with the Saha-Zuber(1974) correlation, which has been widely used in computer codes for nuclear safety analysis. The present theory is more conservative than this correlation, and further shows that, contrary to this correlation, the Stanton number is not solely related to the Peclet number. This may explain the large error margins required for the Saha-Zuber correlation, and also the scatter beyond the error margins specified by the authors. The steady-state OSV heat fluxes for equal and unequal heating cases between parallel plates were compared. The arithmetic mean of heat fluxes for unequal heating cases is less than the heat flux for equal heating cases. The result may imply that OSV is controlled by local thermal parameters rather than bulk parameters.

광중합기 사용 시의 감염 조절 (INFECTION CONTROL OF LIGHT CURING UNITS)

  • 장훈상
    • Restorative Dentistry and Endodontics
    • /
    • 제35권4호
    • /
    • pp.235-237
    • /
    • 2010
  • 복합레진을 광중합할 경우 광중합기의 광섬유말단은 환자의 구강점막과 직접 접촉하게 되어 광섬유말단의 오염이 불가피하다. 광섬유말단은 Centers for Disease Control and Prevention (CDC)에서 "semicritical category"로 분류되며 가압증기 멸균을 하거나, 화학 용액에 10시간 이상 잠기도록 넣어 멸균을 하거나 최소한 고도의 소독처리를 하도록 요구한다. 현재 광중합기의 광섬유말단을 멸균/소독하는 방법은 가압증기멸균이 가능한 광섬유말단을 사용하여 멸균하는 법, 매 환자마다 glutaraldehyde와 같은 화학용액으로 멸균/소독을 하는 법, 멸균되어 시판되는 일회용 플라스틱 광섬유말단을 사용하는 법, 그리고 투명 랩과 같은 일회용 차단막으로 광섬유말단을 감싸는 방법 등이 있다. 일회용 차단막을 사용할 경우 광섬유말단과 환자의 구강점막의 직접적인 접촉을 막아 비교적 간단하게 교차감염의 위험성을 줄일 수 있다.

IPS-Empress 도재에 대한 콤포짓트 레진의 전단결합강도 (EFFECTS OF SURFACE TREATMENT AND BONDING AGENTS ON SHEAR BOND STRENGTH OF THE COMPOSITE RESION TO IPS-EMPRESS CERAMIC)

  • 윤병식;임미경;이용근
    • Restorative Dentistry and Endodontics
    • /
    • 제23권1호
    • /
    • pp.413-423
    • /
    • 1998
  • Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability, biocompatibility and translucency. This study evaluated the shear bond strength of composite resin to the new heat-pressed ceramic material (IPS-Empress System) depending on the surface treatments and bonding agents. The surface treatments were etching with 4.0% hydrofluoric acid, application of silane, and the combination of the two methods. Composite resin was bonded to ceramic with four kinds of dentin bonding agents(All-Bond 2, Heliobond, Scotch bond Multi-purpose and Tenure bonding agents). The ceramic specimen bonded with composite resin was mounted in the testing jig, and the universal testing machine(Zwick 020, Germany) was used to measure the shear bond strength with the cross head speed of 0.5 mm/min. The results obtained were as follows 1. The mean shear bond strength of the specimens of which the ceramic surface was treated with the combination of hydrofluoric acid and silane before bonding composite resin was significantly higher than those of the other surface treatment groups(p<0.05). 2. In the case of All-Bond 2 and Scotchbond Multi-purpose bonding agent group, the surface treatment methods did not influenced significantly on the shear bond(p>0.05). 3. Of the four bonding agents tested, the shear bond strength of Heliobond was significantly lower than those of other bonding agents regardless of the surface treatment methods(p<0.05). 4. The highest shear bond strength($12.55{\pm}1.92$ MPa) was obtained with Scotchbond Multipurpose preceded by the ceramic surface treatment with the combination of 4% hydrofluoric acid and silane.

  • PDF

사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석 (HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY)

  • 김형진;강경욱
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.