• Title/Summary/Keyword: heat change

Search Result 3,563, Processing Time 0.032 seconds

Consideration on the T-history Method for Measuring Heat of Fusion of Phase Change Materials (PCM의 잠열측정을 위한 T-history법에 대한 고찰)

  • 박창현;최주환;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1223-1229
    • /
    • 2001
  • Though conventional calorimetry methods such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) are used generally in measuring heat of fusion, T-history method has the advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermal properties of inhomogeneous phase change materials (PCMs) in sealed tubes. However, random criteria (a degree of supercooling) used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

  • PDF

Improvement of the T-history Method to Measure Heat of Fusion for Phase Change Materials

  • Hong, Hi-Ki;Park, Chang-Hyun;Choi, Ju-Hwan;Peek, Jong-Hyeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Though conventional calorimetry methods such as differential scanning calorimetry and differential thermal analysis are used generally in measuring heat of fusion, T-history method has advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermophyical properties of in-homogeneous phase change materials in sealed tubes. However, the degree of supercooling used in selecting a range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

An Experimental Study on the Latent Heat Storage Using Phase Change Material Within Cylindrical Can (원통형 용기에서의 잠열 축열에 관한 실험적 연구)

  • Go, Deuk-Yong;Choe, Heon-O;Kim, Hyo-Bong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.23-30
    • /
    • 1989
  • Heat transfer phenomena of solidification process of the phase change material within cylindrical can is studied experimentally. N-Eicosane paraffin wax is used for phase change material and its melting temperature is 309.8 K. In order to achieve higher heat transfer rate of latent heat storage apparatus, fins in made of copper are used in the cylindrical can. If there are fins in cylindrical can, we can know that the inward latent heat energy in paraffin can be effectively transfered to cooling water than if finless.

  • PDF

A Study on Quantitative Performance Index for Phase-Change Cooling Systems (상변화 냉각시스템의 정량적 성능지수 연구)

  • Jang, Myeong-Eon;Song, Hye-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • In this paper, I introduce Phase-Change Cooling for thermal management of high power devices that can be applied to High Power Laser and Electric Propulsion Systems which are composed of multiple distributed superheat sources. Phase-Change Cooling can be good used to efficient cooling of their heat sources. Phase-Change Cooling has extremely high efficiency of two-phase heat transport by utilizing heat of vaporization, relatively low flow rates and reduced pumps power. And I suggest TPI(Thermal Performance Index) which is a quantitative performance index of Phase-Change Cooling for thermal management. I quantify the performance of Phase-Change Cooling by introducing TPI. I present the test results of TPI's changing refrigerant, heat sink and flow rate of the Phase-Change Cooling system through the experiments and analyze these results.

An Experimental Study of the effect of Ultrasonic Vibration on Phase Change Heat Transfer (초음파 진동이 상변화 열전달에 미치는 영향에 관한 실험적 연구)

  • Park, Seul-Hyun;Oh, Yool-Kwon;Soe, Dong-Pyo;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.297-303
    • /
    • 2000
  • Natural convection heat transfer have been paid attention because it can be applied to various areas such as cooling of nuclear reactor, heat storing system and so on. Among such applications, the melting process of phase change material(PCM) has been actively studied. However most researches have focused on phase change heat transfer in natural melting. Therefore, In this paper, ultrasonic vibration was adopted to increase the melting rate. In addition, general relationship and corelationship between melting with ultrasonic vibration and melting without ultrasonic vibration have been established during the melting of PCM.

  • PDF

An Experimental Study of enhancing heat transfer by Ultrasonic Vibration (초음파 가진에 따른 열전달 향상에 관한 연구)

  • Youn, Joung-Hwan;Oh, Yool-Kwon;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.235-240
    • /
    • 2001
  • This study presents experimental work on phase change heat transfer, in order to increase heat transfer rate, ultrasonic vibrations were introduced. Solid-liquid phase change occurs in a number of situations of practical interest. This study reveal that ultrasonic vibrations accompany the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. Some common examples include the melting of edible oil, metallurgical process such as casting and welding, and materials science applications such as crystal growth. Therefore, this study presented the effective way to enhance phase change heat transfer.

  • PDF

Experiment study on the Responsiveness of Spot- Type Heat Detector (열 감지기의 응답특성에 관한 시험연구)

  • Lee, Bok-Yeong
    • Fire Protection Technology
    • /
    • s.19
    • /
    • pp.9-16
    • /
    • 1995
  • The spot-type heat detector is a main component of the automatic fire alarm system intended to signal when heat energy is produced in protected area. The most of protected area in our country is installed spot-type heat detector. On this study, the responsiveness to the change of environmental temp. of spot-type heat detec-tor were obtained and analyzed under specified temp., velocity in accordance with the KOFEIS stan-dard. The experiment was carried under the condition with the change of environmental temp. Concluion of this study is as follows : 1. It was confirmed that the responsiveness of rate-of rise heat detector is sensitive to temp. below 10 degrees above zero. The malfunction appeared at 40 degrees above zero and intended performance is disqualified at 50 degrees above zero. 2. The intended performance of fixed-temp. detector which is maintained for the change of envi-ronmental temp. But the responsiveneness is confirmed instability for the change of environmental temp.

  • PDF

The appearance change and heat·moisture transfer properties of knitted fabric by yarn shrinkage (원사의 수축에 따른 다공성 편성물의 형태변화와 열·수분 전달특성)

  • Sang, Jeong-Seon;Park, Juhyun;Lee, Mee-Sik;Oh, Kyung Wha
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.6
    • /
    • pp.880-892
    • /
    • 2017
  • In this study, the appearance change and the heat moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.

Accuracy Improvement for Measurement of Heat of Fusion by T-history Method (T-history법에 의한 잠열량 측정 정확도의 향상)

  • 박창현;백종현;강채동;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.652-660
    • /
    • 2003
  • T-history method, measuring heat-of-fusion of phase change material (PCM) in sealed tubes, has the advantages of a simple experimental device and no requirements in sampling process. However, a degree of supercooling used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion in the original method, which has been improved in order to predict better results by us. In the present study, the modified method was applied to a variety of PCM such as paraffin and lauric acid having very small or no supercooling with a satisfactory precision. Also the selection of inflection point and temperature measurement position was fumed out not to affect the accuracy of heat-of-fusion significantly. As a result, the method can provide an appropriate means to assess a new developed PCM by cycle test even if a very accurate value cannot be obtained.

Detection of Heat Change in Urban Center Using Landsat Imagery (Landsat 영상을 이용한 도심의 열변화 탐지)

  • Kang, Joon-Mook;Ka, Myung-Seok;Lee, Sung-Soon;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Recently, developed countries have continuously been trying to recognize many issues about heat island in urban area and to make up countermeasures for them. This research is designed to extract change of land cover in the area under condition of land development with satellite images and to analyze its effect on the heat change in there. Heat change upon change of land cover in daejeon was analyzed with the four Landsat satellite images taken in April 1985, August 1994, May 2001, and May 2009. In order to measure the temperature on the surface in the city, the land surface temperature was produced with Landsat TM Band 6. Heat change is to detected with it. As a result, The urban area has been increased up to 23.59 percent. On the other hand, the forest area has been decreased up to 27.91%. Due to the urbanization, the temperature on the surface in urban center was higher than surrounding area. In that case, the temperature of urban center area was higher 2.4 to $5.7^{\circ}C$ compared with the forest area.