• Title/Summary/Keyword: heat balance model

Search Result 186, Processing Time 0.032 seconds

A Study on the Fixed-Concentrating Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 복합 Panel에 대한 연구)

  • Kim, Kiu-Jo;Kim, Wan-Tae;Lee, Tae-Ho;Yoo, Hung-Chul;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • The most effective methods for utilizing solar energy are to use the sunlight and solar thermal energy such as hybrid panel simultaneously and to use concentrator. From such a view point systems using various kinds of photovoltaic panels are constructed in the world. However, there has not been a hybrid panel with a concentrator. If the sunlight is concentrated on solar cell, cell conversion efficiency increases and the temperature of the solar cell s increases. As the temperature of the solar cells increases, the cell conversion efficiency gradually decreases. For maintaining the cell conversion efficiency constant, it is necessary to keep solar cell at low temperature. In this paper, after designing a concentration rate for concentrating, we propose a model for cooling the cell and for using wasted heat. And, we compare it with conventional panels after calculating the electrical and thermal efficiency, using the energy balance equation.

  • PDF

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

Hot Leg Temperature Uncertainty due to Thermal Stratification

  • Jang, Ho-Cheol;Ju, Kyong-In;Kim, Young-Bo;Sul, Young-Sil;Cheong, Jong-Sik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.29-35
    • /
    • 1996
  • For the Reactor Coolant System(RCS) flow rate measurement by the secondary calorimetric heat balance method, the coolant temperature of the hot leg is needed. Several Resistance Temperature Detectors(RTD) are installed in the hot leg to measure the temperature, but the average value of RTDs does not correctly represent the energy-averaged(bulk) temperature because of the thermal stratification phenomenon. Therefore some correction is introduced to predict the bulk temperature, but the correction inevitably contains uncertainty because the stratification is not defined well quantitatively yet. Therefore a large uncertainty for the correction has been used for the conservative estimation. But unrealistically large uncertainty causes degradation of the measurement method and yields difficulty to meet the acceptance criterion in start-up flow measurement test. In this paper, an analytical estimation is made on the correction and the related uncertainty using the measured hot leg velocity profile of System 80 reactor flow model test and the measured temperatures of YGN 3&4 and PVNGS 1&2 start-up tests. The results reveal that the magnitude of the correction uncertainty is much smaller than that used in the previous design. Therefore, the confidence on the flow rate measurement method can be improved and the difficulty in start-up flow measurement test can be lessened if the smaller correction uncertainty obtained through this estimation is applied.

  • PDF

A study on the fixed-concentrating hybrid panel using reflector (반사판을 이용한 고정식 집속형 복합 Panel에 대한 연구)

  • Kim, Kiu-Jo;Kim, Seung-Whan;Yoo, Hung-Chul;Kim, Wan-Tae;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.463-466
    • /
    • 2001
  • The most effective methods of utilizing solar energy are to use the sunlight and solar thermal energy such as hybrid panel simultaneously and to use concentrator. From such a view point, systems using various kinds of photovoltaic panels were constructed in the world. However there have not been a type of panel using concentrator and hybrid simultaneously. If the sunlight are concentrated on the solar cell, cell conversion efficiency increase and the temperature of the solar cells increases. As the temperature of the solar cells increases, so cell conversion efficiency decreases. Therefore, for maintaining cell conversion efficiency at these conditions, it is necessary to keep the cell at low temperature. In this paper, after designing a concentrate rate for concentrating, we proposed model for cooling cell and using waste heat, and we compared with conventional panels after calculating the electrical and thermal efficiency using energy balance equation.

  • PDF

Estimation of evapotranspiration in South Korea using Terra MODIS images and METRIC model (Terra MODIS 위성영상과 METRIC 모형을 이용한 전국 증발산량 산정)

  • Kim, Jin Uk;Lee, Yong Gwan;Chung, Jee Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.103-103
    • /
    • 2019
  • 본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.

  • PDF

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

The Effect of the Materials of an Outer Wall and the Paved Street on Human Thermal Comfort in a Housing Complex in Pohang City (포항시의 집합 주거공간에 있어서 외장재 및 도로 구성재료가 인체 온열 쾌적성에 미치는 영향)

  • Jeong, Chang-Won;Kim, Kyung-Dae;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.319-327
    • /
    • 2001
  • The objective of this study is to clarify the effect of thermal radiation environments on human thermal comfort, depending on different canyon types and surface materials on the human thermal comfort in a housing complex in Pohang city, Korea. For this purpose, the operative temperature and new effective temperature were calculated based on the modified mean radiant temperature of canyon models variated by the existence of direct radiation existence, surface materials, and the width and length of the street spaces in a housing complex. These indices for the canyon have been calculated from the meteorological data of Pohang city, which include air temperature, relative humidity, air velocity, global solar radiation and cloud. And the monthly averages of these climate factors measured at noon have been used. The results are as follows: (1) It is revealed that the short-wave radiosity reached the human body is affected by direct solar radiation and surface materials, and the long-wave radiosity by canyon types. (2) The existence of direct solar radiation, the kinds of surface materials and canyon types affect operative temperature($OT_n$) and new effective temperature($ET^*{_n}$). (3) The analysis of the human heat balance in the canyon indicates that the influence of radiation on human body is marc likely to be affected by the existence of direct solar radiation on human model.

  • PDF

Drying Characteristics by Infrared Heating of agricultural products (원적외선 가열에 의한 농산물의 건조특성)

  • Sang, Hie-Sun;Bae, Nae-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 2 to 50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of agricultural products. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the agricultural products. Energy for moisture evaporation is supplied by the infrared radiant energy. The optimum temperature and drying time for the best drying conditions of changing the red peppers with the moisture content of 18% and the restore rate of 80~85% are $80^{\circ}C$ and 44 hours. The performance of radiation tubes coating with the radiation paint developed in this research has the energy of $2.27{\times}103W/m^2{\mu}m$, $150^{\circ}C$ within the scope of radiation wave length of $2{\sim}30{\mu}m$ and has the radiation 0.92~0.93, which is superior to the general radiation tubes. The extinction coefficient according to the band pass filter using the 4 flux theory ha higher dependability on wave length, accounting for $2{\sim}17{\mu}m$ and $5{\times}105{\sim}106m-1$. A comparison between the theoretical energy transfer whose figures are interpreted according to 4 flux theory and the experimental energy transfer of far infrared dryer leads to the findings of the agreement less than 5%.

  • PDF

Dynamic Modeling of Gasification Reactions in Entrained Coal Gasifier (석탄 가스화 반응의 동적 거동 전산 모사)

  • Chi, Jun-Hwa;Oh, Min;Kim, Si-Moon;Kim, Mi-Young;Lee, Joong-Won;Kim, Ui-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.386-401
    • /
    • 2011
  • Mathematical models for various steps in coal gasification reactions were developed and applied to investigate the effects of operation parameters on dynamic behavior of gasification process. Chemical reactions considered in these models were pyrolysis, volatile combustion, water shift reaction, steam-methane reformation, and char gasification. Kinetics of heterogeneous reactions between char and gaseous agents was based on Random pore model. Momentum balance and Stokes' law were used to estimate the residence time of solid particles (char) in an up-flow reactor. The effects of operation parameters on syngas composition, reaction temperature, carbon conversion were verified. Parameters considered here for this purpose were $O_2$-to-coal mass ratio, pressure of reactor, composition of coal, diameter of char particle. On the basis of these parametric studies some quantitative parameter-response relationships were established from both dynamic and steady-state point of view. Without depending on steady state approximation, the present model can describe both transient and long-time limit behavior of the gasification system and accordingly serve as a proto-type dynamic simulator of coal gasification process. Incorporation of heat transfer through heterogenous boundaries, slag formation and steam generation is under progress and additional refinement of mathematical models to reflect the actual design of commercial gasifiers will be made in the near futureK.

STUDY ON A EFFECTIVE THERMAL CONDUCTIVITY OF THE CFRP COMPOSITE STRUCTURE BY A SIMPLIFIED MODEL (모델 단순화에 의한 CFRP 복합 구조물의 유효 열전도율 추출 방법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.63-69
    • /
    • 2015
  • The thermal balance test in vacuum chamber for satellite structures is an essential step in the process of satellite development. However, it is technically and economically difficult to fully replicate the space environment by using the vacuum chamber. To overcome these limitations, the thermal analysis through a computer simulation technique has been conducted. The CFRP composite material has attracted attention as satellite structures since it has advantages of excellent mechanical properties and light weight. However, the nonuniform nature of the thermal conductivity of the CFRP structure should be noted at the step of thermal analysis of the satellite. Two different approaches are studied for the thermal analyses; a detailed numerical modeling and a simplified model expressed by an effective thermal conductivity. In this paper, the effective thermal conductivities of the CFRP composite structures are extracted from the detailed numerical results to provide a practical thermal design data for the satellite fabricated with the CFRP composite structure. Calculation results of the surface temperature and the thermal conductivities along x, y, z directions show fairly good agreements between the detailed modeling and the simplified model for all the cases studied here.