• Title/Summary/Keyword: heat and mass transfer

Search Result 1,290, Processing Time 0.028 seconds

Thermophysiological Responses and Subjective Sensations when Wearing Clothing with Quickly Water-Absorbent and Dry Properties Under Exercise-Induced Heat Strain (운동에 의한 열 스트레스하에서 흡한속건성 소재 운동복 착용시의 온열생리적 반응 및 주관적 감각)

  • Lee, So-Jin;Park, Shin-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.349-356
    • /
    • 2006
  • The purpose of this study was to compare the thermophysiological responses and subjective sensations of clothing materials with different water transfer property investigated in exercising and resting subjects at an ambient temperature of $20^{\circ}C$ and a relative humidity of 40%. Two kinds of clothing ensemble were tested: 100% cotton with highly water-absorbent but slowly dry properties(C) and 100% polyester with quickly water-absorbent and dry properties by four capillary channels(QADP). Seven apparently healthy male participants each undertook two series of experiments comprised 10-min of rest, 20-min of exercise with 70% of $VO_{2max}$ on a treadmill and 20-min of recovery. Mean skin temperature was significantly lower in QADP than in C during exercise and recovery. Clothing microclimate temperature was significantly lower in QADP during exercise and clothing surface temperature was also lower in QADP especially during recovery. Also, clothing surface humidity was significantly higher in QADP after the later half of exercise. The concentration of blood lactic acid tended to decrease to a lower level at recovery 3 minutes when wearing QADP rather than C clothing ensemble. Metabolic energy was marginally significantly less during the second half of exercise in QADP. Body mass loss tended to be greater in C than in QADP. The participants had better scores in thermal sensation, comfortable sensation and wetness in QADP during exercise and recovery. These results show that functional materials with quickly water-absorbent and dry properties can alleviate heat strain and induce more comfortable clothing microclimates and subjective sensations in the exercise-induced hyperthermia.

A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery (Li-ion 이차전지의 충방전 시 발열 및 충방전 특성의 CFD 모델링)

  • Kang, Hyeji;Park, Hongbeom;Han, Kyoungho;Yoon, Do Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.114-121
    • /
    • 2016
  • This study investigates a CFD modeling of the charge-discharge behavior due to heat generation during charge-discharge cycles of a Li-ion secondary battery(LIB). Present LIB system adopted a current-density equation, heat and mass transfer governing equations upon the 1-dimensional system to the thickness direction for the rectangular pouch configuration. According to the 3-kinds of the charge-discharge current densities of 1C($17.5A/m^2$), 3C($52.5A/m^2$) and 5C($87.5A/m^2$) subject to a 3 V of cut-off voltage, a constant-temperature system at 298 K and three different heat generating systems were analyzed with comparison. Battery capacity decreases with increment of charge-discharge densities not only at the constant-temperature system but also at the heat-generating system. The time for charge-discharge cycles increases at the heat-generating system compare to the constant-temperature system. These trends are considered that the increase of temperature due to heat generation causes the decrement of equilibrium potential of electrodes and the increment of diffusivity of Li ions. Furthermore, cooling effects were discussed in order to control the influence of heat generation due to charge-discharge behavior of a Li-ion secondary battery.

Effect of Laser Processing Patterns on the Bonding Interface Quality during Laser Sintering of Magnesium Alloys with Zirconia (마그네슘 합금 표면의 지르코니아 분말 레이저 소결과정에서 조사 패턴이 접합 계면 품질에 미치는 영향)

  • Yoon, Sangwoo;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2021
  • The quality of the ceramic sintered coating on a metal surface through laser surface treatment is affected by the laser irradiation pattern. Depending on the laser irradiation pattern, the amount of residual stress and heat applied or accumulated on the surface increases or decreases, affecting the thickness attained in the ceramic sintering area. When the heat energy accumulated in the sintering area is high, the ceramic and the metal alloy melt and sufficiently mix to form a homogeneous and thick bonding interface. In this study, the thermal energy accumulation in the region sintered with zirconia was controlled using four types of laser processing patterns. The thickness of the diffusion region is analyzed by laser-induced breakdown spectroscopy of Mg-ZrO2 generated by laser sintering zirconia powder on the magnesium alloy surface. On the basis of the analysis of the Mg and Zr present in the sintered region through LIBS, the effect of the irradiation pattern on the sintering quality is confirmed by comparing and analyzing the heat and mass transfer tendency of the diffusion layer and the degree of diffusion according to the irradiation pattern. The derived diffusion coefficients differed by up to 9.8 times for each laser scanning pattern.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII) (시분해 레이저 유도 백열법을 이용한 매연 입자 크기에 관한 수치적 연구)

  • Lee, Jong-Ho;Kim, Jeong-Yong;Jeong, Dong-Soo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1022-1031
    • /
    • 2005
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to obtain an appropriate calibration curve for determining primary particle size by comparing the gated signal ratio and double-exponential curve fitting methods. Not only the effects of laser fluence and gas temperature on the cooling behavior but also heat transfer mechanisms of heated soot particle have been investigated. The second-order exponential curve fitting showed better agreements with the LII signals than the gated signal ratio method which was based on the lust-order exponential curve fit. And the temporal decay rate of the LII signal and primary particle size showed nearly linear relationship, which was little dependent on the laser fluence. And it also could be reconfirmed that vaporization was dominant process of heat loss during first loons after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

Evaporation Theory for Reclaimed Clay (준설 점토 지반에서의 증발 이론 개발)

  • 이형주;이인모;이영남;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.55-64
    • /
    • 2003
  • Desiccation of a soil is basically the removal of water by evaporation, which is controlled by evaporativity and evaporability. Surface evaporation improves the trafficability which is essential for the access of construction equipment in the area reclaimed with soft clay. The existing traditional methods for evaluating evaporation can not account for the deformation of reclaimed soft soils during evaporation. Therefore, a theoretical model for predicting the rate of evaporation from the surface of a deformable material is proposed. The model is based on a system of equations for coupled heat and mass transfer in unsaturated soils. The modified pressure plate extractor test and glass desiccator test were carried out to obtain the soil-water characteristic curve for a deformable soil. The column drying test was conducted to investigate one dimensional water flow, heat flow and evaporation in the surface. A finite difference program was developed to solve the coupled nonlinear partial differential equations, which permit the study of water, vapor and heat flows in the deformable soil. Comparison between measured and simulated values shows a reasonably good matching between the two.

A Numerical Study on Improving the Thermal Hydraulic Performance of Printed Circuit Heat Exchanger Using the Supercritical Carbon Dioxide (초임계 이산화탄소를 작동유체로 한 PCHE의 열수력 성능 향상을 위한 수치해석적 연구)

  • Park, Bo Guen;Kim, Dae Hyun;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.779-786
    • /
    • 2015
  • The objective of this study is to propose a new channel shape that improves thermal-hydraulic performance. The existing Zigzag channel has high pressure loss due to flow separation and reverse flow. To improve this disadvantage, partial straight channel is inserted into bended points. Also, the effects of straight channel's length change on heat transfer and pressure loss are analyzed. Thermal-hydraulic performance of the new shape and existing Zigzag channel are quantitatively compared in terms of Goodness Factor. Mass flow rate was changed from $1.41{\times}10^{-4}$ to $2.48{\times}10^{-4}kg/s$. The average volume goodness factor of 1mm straight channel shape was increased by 25% compared to the Zigzag channel.

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

Fundamental Studies on the Thermal conductivity and Thermal Diffusivity of Rough rice (벼의 열전도계수와 열확산계수에 관한 기초연구)

  • 김만수;고학균
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.53-63
    • /
    • 1979
  • The knowlege of thermal properties of rough rice has become of greate importance to the analysis of heat and mass transfer phenomenon in rice drying and storage process. Some information is available on the thermal properties of rough rice in foreign countries but is not available for these properties in Korea. A fundamental study was made to determine the thermal conductivity and thermal diffusivity of rough rice with line source method and to select current and resistance suitable for these properties from investigating the effect of current and resistance of heating wire on the temperature rise. The result of this study may be summarized as follows ; 1. Even through the power per unit length of heating wires is about the same, the tendency of temperature rise showed a little difference among them , and the suitable range of it for thermal properties was found to be 3.56-5.37w/m. 2. the most desirable resistance and current of heating wire was 18.40 ohm/m, 0.44 amperes among three kinds of heating wires and currents, respectively. because it took 13 minutes or so for the heating wire to reach equilibrium temperature. 3. The thermal conductivity of rough rice was 0.120-0.130 w/m$ ^\circ C$. and thermal diffusivity of it was $5.8210 $\times10^{-8} -9.7529 $\times10^{-8} m^2 /s.$ 4.The thermal conductivity showed a little difference in variation with resistance of heating wire but the variation of current of heating wire at the same resistance did not affect the thermal conductivity , and the thermal diffusivity was not affected by the variation of resistance and current.

  • PDF

Theoretical and numerical study to investigate characteristics of light-off and steady state of methane autothermal reactor for efficient light-off, high hydrogen yield and selectivity (시동 특성, 수소 생산 및 선택성 향상을 위한 자열개질기의 이론 및 수치해석적 연구)

  • Lee, Shin-Ku;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3353-3358
    • /
    • 2007
  • The present paper is devoted to investigate dynamic effect and steady-state performance of methane autothermal reformer theoretically and numerically. In order to simplify the complicated phenomena in the system, axisymmetric heterogeneous reactor model is developed. As autothermal reaction takes places on catalyst surface between bulk gas and catalyst, volume averaging method is incorporated using porous medium approach. To understand the start-up process which occurs in the reactor is highly important. Therefore, in this paper we get various goverining equations to find out transient and steady solutions and time scale for start-up introducing dimensionless variables. Start-up is a significant issue in reforming reaction for automobile system and fueling of SOFC-based auxiliary power units. This paper deals with characteristics of heat and mass transfer and predicted light-off time in the reformer as oxygen to carbon ratio ($O_2$/C) and amount of feeding gas.

  • PDF