• Title/Summary/Keyword: heart rate sensing clothing

Search Result 4, Processing Time 0.015 seconds

Research on Heart Rate Sensing Clothing Design for Seniors Based on Universal Fashion (유니버설 패션에 기반한 시니어 심박측정 의류 디자인 연구)

  • Koo, Hye Ran;Jeon, Dong Jin;Lee, Joo Hyeon
    • Fashion & Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.692-700
    • /
    • 2017
  • The number of elderly citizens has risen in Korea and resulted in an aging society. Correspondingly, the social interest in the aging population has escalated immensely; however, research or product development on the quality of life for seniors has shortcomings. Healthcare smart clothing is required to help the elderly with changes and weaknesses that follow aging; however, there is unfortunately insufficient amounts available. This study explores the feasibilities of smart clothing for seniors based on a universal design. Based on previous research, we analyzed the universal design theory, body shape characteristics and design requirements for seniors, and heart rate measurement method. The design is different according to body shape and body shape is different between sex, age, and body race; therefore, subjects were limited to 70-74 year old Korean males in this study. This study proposes a guideline for heart rate sensing clothing that satisfies the 'universal design' aspects as well as the functionality of heart sensing, senior's physical characteristics and needs. It has broadened the range of smart clothing, which was once limited to the younger generation and provided a foundation for the development of specialized smart clothing for seniors.

Application of a Textile-based Inductive Sensor for the Vital Sign Monitoring

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seonah;Kim, Kyung-Nam;Kang, Seung-Jin;Lee, Joo Hyeon;Lee, Jeong-Whan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.364-371
    • /
    • 2015
  • In this study, we developed a feasible structure of a textile-based inductive sensor using a machine embroidery method, and applied it to a non-contact type vital sign sensing device based on the principle of magnetic-induced conductivity. The mechanical heart activity signals acquired through the inductive sensor embroidered with conductive textile on fabric were compared with the Lead II ECG signals and with respiration signals, which were simultaneously measured in every case with five subjects. The analysis result showed that the locations of the R-peak in the ECG signal were highly associated with sharp peaks in the signals obtained through the textile-based inductive sensor (r=0.9681). Based on the results, we determined the feasibility of the developed textile-based inductive sensor as a measurement device for the heart rate and respiration characteristics.

A Study of Sensing Locations for Self-fitness Clothing base on EMG Measurement (셀프 피트니스 의류 개발을 위한 근전도 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sangwoo
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.755-765
    • /
    • 2016
  • Recently, interest in monitoring health and sports is growing because of the emphasis on wellness, which is accelerating the development and commercialization of smart clothing for biosignal monitoring. In addition to exerciseeffect monitoring clothing that tracks heart rate and respiration, recently developed clothing makes it possible to monitor muscle balance using electromyogram (EMG). The electrode for EMG have to attached to an accurate location in order to obtain high-quality signals in surface EMG measurement. Therefore, this study develops monitoring clothing suitable for different types of human bodies and aims to extract suitable range of EMG according to movements in order to develop self-fitness monitoring clothing based on EMG measurement. This study identified and attached electrodes on six upper muscles and two lower muscles of ten males in their 20s. After selecting six main motions that create a load on muscles, the 8-ch wireless EMG system was used to measure amplitude value, noise, SNR and SNR (dB) in each part and statistical analysis was conducted using SPSS 20.0. As a result, the suitable range for EMG measurement to apply to clothing was identified as four parts in musculus pectoralis major; three parts in muscle rectus abdominis, two parts each in shoulder muscles, backbone erector, biceps brachii, triceps brachii, and musculus biceps femoris; and four part in quadriceps muscle of thigh. This was depicted diagrammatically on clothing, and the EMG-monitoring sensing locations were presented for development of self-fitness monitoring.

Research on Planning and Design of Smart Fitness Wear for Personal Training Improvement (퍼스널 트레이닝 효과 향상을 위한 스마트 피트니스웨어의 상품기획 및 디자인 방향 연구)

  • Jung, Chanwoong;Kwak, Yonghoo;Park, Seoyeon;Lee, Joohyeon
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.97-108
    • /
    • 2017
  • The purpose of this study was to propose a product planning and design direction for smart fitness wear that will improve the impact of personal training based on researching the requirements of smart fitness wear and its acceptance level, as well as the functional demand. The study conducted in-depth interviews with professional fitness trainers and derived five categories and thirteen keywords by analyzing the categorical data analysis using the interview data. In addition, we surveyed general consumers to measure the acceptance level of smart fitness wear and the functional demand for product development. The results revealed that the difference in the acceptance level of smart fitness wear generally depended on the characteristics related to exercise involvement and exercise-related culture rather than on the demographic characteristics. With regard to the difference in the functional demand of smart fitness wear, the results showed that professional trainers focused on the scientific improvement of the effect of exercise while general consumers focused on the function that considers the sustainability of exercise. Based on the results, we proposed product planning and design directions such as 'mounting of heart rate sensing, muscle activity sensing, motion angle or posture sensing, and motion sensing', 'development of concepts and contents for expert line, ordinary line', 'compression wear design', and 'differentiation of product development according to exercise areas'.