• Title/Summary/Keyword: health-promoting microorganisms

Search Result 24, Processing Time 0.023 seconds

Quality characteristics of Aster scaber and development of functional healthy drinks using its extract (참취의 고부가 식품이용화를 위한 품질특성 및 기능성 건강음료 개발)

  • 김수정;김재광;김건희
    • Korean journal of food and cookery science
    • /
    • v.20 no.3
    • /
    • pp.310-316
    • /
    • 2004
  • This study was conducted to investigate quality characteristics of Aster scaber to increase the value of functional food resources. To examine quality characteristics of Aster scaber, various factors such as color, texture, fiber, minerals, tannin, crude proteins, crude lipids and sensory quality were determined using physiochemical methods. The contents of dietary fiber were 0.68 g in each 100 g of Aster scaber (freeze drying base). In mineral contents, iron was the highest value in Aster scaber (freeze drying base). The contents of tannin were 35.6 ppm of Aster scaber (fresh base). Aster scaber was shown significant difference in tannin from freeze drying leaf. From the results of sensory evaluation, the age of 30's and 40's showed a better acceptability in blanching. Functional healthy drinks were made from extracts of Aster scaber for relieving thirst and promoting health. The recipe of drinks were decided to establish manufacture condition through the sensory evaluation, color, flavor, taste, and overall acceptability. The shelf-life was established in 18 months through quality was analyzed such as soluble solids, optical density 480, pH, acidity and microorganisms.

Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics

  • Merisa Sirisopapong;Takeshi Shimosato;Supattra Okrathok;Sutisa Khempaka
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1209-1220
    • /
    • 2023
  • Objective: The use of probiotics as an alternative to antibiotics in animal feed has received considerable attention in recent decades. Lactic acid bacteria (LAB) have remarkable functional properties promoting host health and are major microorganisms for probiotic purposes. The aim of this study was to characterize LAB strains of the chicken digestive tract and to determine their functional properties for further use as potential probiotics in poultry. Methods: A total of 2,000 colonies were isolated from the ileum and cecal contents of the chickens based on their phenotypic profiles and followed by a preliminary detection for acid and bile tolerance. The selected 200 LAB isolates with exhibited well-tolerance in acid and bile conditions were then identified by sequencing the 16S rDNA gene, followed by acid and bile tolerance, antimicrobial activity, adhesion to epithelial cells and additional characteristics on the removal of cholesterol. Then, the two probiotic strains (L. ingluviei and L. salivarious) which showed the greatest advantage in vitro testing were selected to assess their efficacy in broiler chickens. Results: It was found that 200 LAB isolates that complied with all measurement criteria belonged to five strains, including L. acidophilus (63 colonies), L. ingluviei (2 colonies), L. reuteri (58 colonies), L. salivarius (72 colonies), and L. saerimneri (5 colonies). We found that the L. ingluviei and L. salivarius can increase the population of LAB and Bifidobacterium spp. while reducing Enterobacteria spp. and Escherichia coli in the cecal content of chickens. Additionally, increased concentrations of valeric acid and short chain fatty acids were also observed. Conclusion: This study indicates that all five Lactobacillus strains isolated from gut contents of chickens are safe and possess probiotic properties, especially L. ingluviei and L. salivarius. Future studies should evaluate the potential for growth improvement in broilers.

Potentials of Synbiotics for Pediatric Nutrition and Baby Food Applications: A Review (소아 영양 및 유아식 응용을 위한 신바이오틱스의 잠재력: 총설)

  • Jung, Hoo Kil;Kim, Sun Jin;Seok, Min Jeong;Cha, Hyun Ah;Yoon, Seul Ki;Lee, Nah Hyun;Kang, Kyung Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Probiotic, prebiotic, and synbiotic substances as well as microorganisms were added to infant formula in an attempt to influence the intestinal microflora with an aim to stimulate the growth of lactic acid bacteria, especially bifidobacteria and lactobacilli. Over the last 10 years, new synbiotic infant formulas containing probiotics and prebiotics have been proposed in order to simulate the effect of breast-feeding on the intestinal microflora. Owing to their synergistic effect, the new synbiotics are expected to be more helpful than using probiotics and prebiotics individually. Maintenance of the viability of the probiotics during food processing and the passage through the gastrointestinal tract should be the most important consideration, since a sufficient number of bacteria ($10^8cfu/g$) should reach the intended location to have a positive effect on the host. Storage conditions and the processing technology used for the manufacture of products such as infant formula adversely affect the viability of the probiotics. When an appropriate and cost-effective microencapsulation methodology using the generally recognized as safe (GRAS) status and substances with high biological value are developed, the quality of infant formulas would improve. The effect of probiotics may be called a double-effect, where one is an immunomodulatory effect, induced by live probiotics that advantageously alter the gastrointestinal microflora, and the other comprises anti-inflammatory responses elicited by dead cells. At present, a new terminology is required to define the dead microorganisms or crude microbial fractions that positively affect health. The term "paraprobiotics" (or ghost probiotics) has been proposed to define dead microbial cells (not damaged or broken) or crude cell extracts (i.e., cell extracts with complex chemical composition) that are beneficial to humans and animals when a sufficient amount is orally or topically administered. The fecal microflora of bottle-fed infants is altered when the milk-based infant formula is supplemented with probiotics or prebiotics. Thus, by increasing the proportion of beneficial bacteria such as bifidobacteria and lactobacilli, prebiotics modify the fecal microbial composition and accordingly regulate the activity of the immune system. Therefore, considerable attention has been focused on the improvement of infant formula quality such that its beneficial effects are comparable to those of human milk, using prebiotics such as inulin and oligosaccharides and potential specific probiotics such as bifidobacteria, which selectively stimulate the proliferation of beneficial bacteria in the microflora and the indigenous intestinal metabolic activity of the microflora.

  • PDF

Effects of Schizandra chinensis Extract on the Growth of Intestinal Bacteria Related with Obesity (오미자 추출물이 비만과 관련된 장내 세균의 생육에 미치는 영향)

  • Jeong, Eun-Ji;Lee, Woon-Jong;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.673-680
    • /
    • 2009
  • This study was conducted to screen for plant food materials that improve human intestinal microflora, especially microorganisms associated with obesity. Among 30 tested plant food materials, the extract of Schizandra chinensis inactivated Eubacterium limosum, Bacteroides fragilis and Clostridium spp. Additionally, S. chinensis extract was also found to have a growth-promoting effect on Bifidobacterium spp.. The antimicrobial activity and antioxidant activity of the water extract did not decrease in respond to heating. Additionally, the water extract of S. chinensis did not show a toxic effect on the growth of Caco-2 cells. In vivo feeding tests were performed to investigate the influence of extract on the intestinal microflora in rats. Although the extract did not reduce obesity induced by a high fat diet, it led to significant increase in the population of Bifidobacterium spp. and a decrease in the population of Clostridium spp. in rats. Taken together, these results indicate that S. chinensis could be useful as a functional food component to control intestinal microbial flora.