• 제목/요약/키워드: health recommender system

검색결과 6건 처리시간 0.02초

Framework of Health Recommender System for COVID-19 Self-assessment and Treatments: A Case Study in Malaysia

  • Othman, Mahfudzah;Zain, Nurzaid Muhd;Paidi, Zulfikri;Pauzi, Faizul Amir
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.12-18
    • /
    • 2021
  • This paper proposes a framework for the development of the health recommender system, designed to cater COVID-19 symptoms' self-assessment and monitoring as well as to provide recommendations for self-care and medical treatments. The aim is to provide an online platform for Patient Under Investigation (PUI) and close contacts with positive COVID-19 cases in Malaysia who are under home quarantine to perform daily self-assessment in order to monitor their own symptoms' development. To achieve this, three main phases of research methods have been conducted where interviews have been done to thirty former COVID-19 patients in order to investigate the symptoms and practices conducted by the Malaysia Ministry of Health (MOH) in assessing and monitoring COVID-19 patients who were under home quarantine. From the interviews, an algorithm using user-based collaborative filtering technique with Pearson correlation coefficient similarity measure is designed to cater the self-assessment and symptoms monitoring as well as providing recommendations for self-care treatments as well as medical interventions if the symptoms worsen during the 14-days quarantine. The proposed framework will involve the development of the health recommender system for COVID-19 self-assessment and treatments using the progressive web application method with cloud database and PHP codes.

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여 (Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE)

  • 장하렴;유지수;양성병
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.57-84
    • /
    • 2023
  • 현대사회는 정보통신기술 및 빅데이터 기술의 발전으로 누구나 인터넷을 통해 손쉽게 방대한 데이터를 얻고 활용할 수 있는 시대로, 양질의 데이터를 수집하는 능력을 넘어 수많은 정보 속에서 올바른 데이터만을 선별하는 능력이 더욱 중요해지고 있다. 이러한 기조는 학계에서도 이어지고 있는데, 축적되는 연구물 속에서 양질의 연구를 선별하여 올바른 지식구조를 형성하기 위해, 다양한 연구 분야에서 체계적 고찰(systematic review) 및 비체계적 고찰(non-systematic review)과 같은 문헌연구(literature review)가 수행되고 있다. 한편, 코로나19 팬데믹 이후 의료산업에서도 그동안 합의에 이르지 못했던 원격의료가 제한적으로나마 허용되고, 인공지능 및 빅데이터 기술이 응용된 건강추천시스템(health recommender systems: HRS)과 같은 새로운 의료서비스가 각광을 받고 있다. 하지만, 실무적으로 HRS가 미래 의료산업 발전을 이끌 중요한 기술로 평가받고 있음에도 불구하고, 학술적인 문헌연구는 다른 분야에 비해 매우 부족한 실정이다. 더불어 HRS는 학제적 성격이 강한 융합 분야임에도 불구하고, 기존의 문헌연구는 비체계적 고찰과 체계적 고찰 방법만을 주로 활용하여 이뤄졌기 때문에, 다른 연구 분야와의 상호작용이나 동적인 관계를 유추하기에는 한계가 존재한다. 이에, 본 연구에서는 인용네트워크 분석(citation network analysis: CNA)을 활용하여 HRS 및 주변 연구 분야의 전체적인 네트워크 구조를 파악하였다. 또한, 이 과정에서 최신 논문이 인용 관계가 잘 나타나지 않는 문제를 보완하기 위해 GraphSAGE 알고리즘을 적용함으로써, HRS 연구에 있어 'recommender system', 'wireless & IoT', 'computer vision', 'text mining' 등과 같은 연구 분야들의 중요도가 높아지고 있음을 파악하였으며, 이와 동시에 개인화(personalization) 및 개인정보보호(privacy) 등과 같은 새로운 키워드가 주요 이슈로 등장하고 있음을 확인하였다. 본 연구를 통해 HRS 연구 커뮤니티의 구조를 파악하고, 관련된 연구 동향을 살펴보며, 미래 HRS 연구 방향을 설계함에 있어 실질적인 통찰을 제공할 수 있을 것으로 기대한다.

사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발 (Development of User Based Recommender System using Social Network for u-Healthcare)

  • 김혜경;최일영;하기목;김재경
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.181-199
    • /
    • 2010
  • 인구의 고령화 및 건강에 대한 관심이 증가됨에 따라 유헬스케어 서비스는 발병 후 관리관점에서 발병 전의 예방 관점으로 그 목적이 점차 이동하고 있다. 그러나 기존의 유헬스케어 서비스는 원격진료 차원의 의료 서비스 성격이 강하여, 만성 성인병과 같은 대사 증후군을 예방 및 관리하기에는 한계가 있을 뿐만 아니라, 관리자 중심의 단방향 서비스를 제공함으로 인해 사용들이 중도에 이용을 포기하는 비율이 높았다. 이와 같은 문제를 해결하기 위하여, 본 연구에서는 사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템을 제안하였으며, 실세계에서 유헬스케어 서비스 추천 시스템의 활용 가능성을 제시하기 위하여 실제 의료원에서 대사 증후군 예방 및 관리를 위해 처방한 식단 및 운동 정보를 기반으로 유비쿼터스 컴퓨팅 환경에서 적용가능한 시스템을 구현하였다. 본 연구에서 제안한 시스템은 사용자가 선호하지 않는 서비스가 네트워크를 통해 확산될 가능성을 낮추는 동시에 추천의 신뢰성 제고를 위해 네이버들이 이용한 서비스를 공유함으로써 전체적인 추천 품질을 높인다. 즉, 사용자의 식습관 및 운동습관 등과 같은 생활습관을 개선하기 위하여 사회 네트워크를 활용함으로써 사용자간의 자율협업을 통한 개인화된 추천이 가능하다. 따라서 본 연구에서 제안하는 유헬스케어 서비스 추천 시스템은 생활습관 개선을 위하여 사용자에게 적합한 식단 및 운동을 제공하고, 생활습관의 개선을 통해 만성 성인병과 같은 대사증후군을 사전에 예방할 수 있을 것으로 기대된다.

확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템 (A CF-based Health Functional Recommender System using Extended User Similarity Measure)

  • 홍세인;정의주;김재경
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.1-17
    • /
    • 2023
  • 정보통신기술의 발전과 디지털 기기의 대중화로 인해, 온라인 시장의 규모가 커지고 있다. 그 결과 고객들은 상품을 선택하는데 많은 시간과 비용이 소요되는 정보 과부하(Information Overload) 문제에 직면하고 있다. 따라서 고객이 선호할만한 상품을 추천해 주는 추천 시스템은 필수적인 도구가 되었으며 협업 필터링(Collaborative Filtering) 기법은 가장 널리 쓰이는 추천 방법이다. 전통적인 추천 시스템은 평점과 같은 정량적인 데이터만을 사용하기 때문에 추천의 정확도는 높지 않다. 이와 같은 문제를 해결하기 위해 요즘에는 사용자 리뷰와 같은 정성적 데이터를 반영하는 연구가 활발히 진행되고 있다. 협업 필터링의 일반적인 절차는 사용자-상품 행렬 생성, 이웃 집단 탐색, 추천 목록 생성 3단계로 구성되며 코사인 같은 사용자 유사도를 사용하여 목표 고객의 이웃을 탐색하며, 추천 상품 목록을 생성한다. 본 연구에서는 이웃 집단 탐색 및 추천 목록 생성 단계에서 사용하는 사용자 간의 유사도를 기존의 사용자 평점을 이용한 유사도에 고객의 리뷰 데이터를 사용하는 확장된 사용자 유사도를 제시한다. 리뷰를 정량화 하기 위해 본 연구에서는 텍스트 마이닝을 활용한다. 즉, 리뷰 데이터에 TF-IDF, Word2Vec, 그리고 Doc2Vec 기법을 사용하여 두 사용자 간의 리뷰 유사도를 구한 후 사용자 평점을 사용한 유사도와 리뷰 유사도를 결합한 확장된 유사도를 생성하는 것이다. 이를 검증하기 위해 전자상거래 사이트인 Amazon의 'Health and Personal Care'의 사용자 평점과 리뷰 데이터를 사용하였다. 실험 결과, 사용자 간 유사도를 산출할 때 기존의 평점에 기반한 유사도만을 사용하는 것보다, 사용자 리뷰의 유사도를 추가로 반영한 확장된 유사도를 사용하면 추천의 정확도가 높아진다는 것을 확인했다. 또한, 여러 텍스트 마이닝 기법 중에서 TF-IDF 기법을 사용한 확장된 유사도를 이웃 집단 탐색 및 추천 목록 생성단계에서 사용할 때의 성능이 가장 좋게 나타났다.

Diet-Right: A Smart Food Recommendation System

  • Rehman, Faisal;Khalid, Osman;Haq, Nuhman ul;Khan, Atta ur Rehman;Bilal, Kashif;Madani, Sajjad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2910-2925
    • /
    • 2017
  • Inadequate and inappropriate intake of food is known to cause various health issues and diseases. Due to lack of concise information about healthy diet, people have to rely on medicines instead of taking preventive measures in food intake. Due to diversity in food components and large number of dietary sources, it is challenging to perform real-time selection of diet patterns that must fulfill one's nutrition needs. Particularly, selection of proper diet is critical for patients suffering from various diseases. In this article, we highlight the issue of selection of proper diet that must fulfill patients' nutrition requirements. To address this issue, we present a cloud based food recommendation system, called Diet-Right, for dietary recommendations based on users' pathological reports. The model uses ant colony algorithm to generate optimal food list and recommends suitable foods according to the values of pathological reports. Diet-Right can play a vital role in controlling various diseases. The experimental results show that compared to single node execution, the convergence time of parallel execution on cloud is approximately 12 times lower. Moreover, adequate accuracy is attainable by increasing the number of ants.