• Title/Summary/Keyword: health monitoring technique

Search Result 347, Processing Time 0.025 seconds

Health Monitoring for Large Structures using Brillouin Distributed Sensing

  • Thevenaz, L.;Chang, KT.;Nikles, M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.421-430
    • /
    • 2005
  • Brillouin time-domain analysis in optical fibres is a novel technique making possible a distributed measurement of temperature and strain over long distance and will deeply modify our view about monitoring large structures, such as dams, bridges, tunnels and pipelines, Optical fibre sensing will certainly be a decisive tool for securing dangerous installations and detecting environmental and industrial threats.

Temperature Effect-free Impedance-based Local Damage Detection (온도변화에 자유로운 임피던스 기반 국부 손상검색)

  • Koo, Ki-Young;Park, Seung-Hee;Lee, Jong-Jae;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.21-26
    • /
    • 2007
  • This paper presents an impedance-based structural health monitoring (SHM) technique considering temperature effects. The temperature variation results in a significant impedance variation, particularly both horizontal and vertical shifts in the frequency domain, which may lead to erroneous diagnostic results of real structures. A new damage detection strategy has been proposed based on the correlation coefficient (CC) between the reference impedance data and a concurrent impedance data with an effective frequency shift which is defined as the shift causing the maximum correlation. The proposed technique was applied to a lab-sized steel truss bridge member under the temperature varying environment. From an experimental study, it has been demonstrated that a narrow cut inflicted artificially to the steel structure was successfully detected using the proposed SHM strategy.

  • PDF

A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors (광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구)

  • Kim Won-Seok;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF

Optimal Sensor Allocation of Cable-Stayed Bridge for Health Monitoring (사장교의 상시감시를 위한 최적 센서 구성)

  • Heo, Gwang-Hee;Choi, Mhan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.145-155
    • /
    • 2002
  • It is essential for health monitoring of a cable-stayed bridge to provide more accurate and enough information from the sensors. In experimental modal testing, the chosen measurement locations and the number of measurements have a major influence on the quality of the results. The choice is often difficult for complex structures like a cable-stayed bridge. It is extremely important a cable-stayed bridge to minimize the number of sensing operations required to monitor the structural system. In order to obtain the desired accuracy for the structural test, several issues must take into consideration. Two important issues are the number and location of response sensors. There are usually several alternative locations where different sensors can be located. On the other hand, the number of sensors might be limited due to economic constraints. Therefore, techniques such as methodologies, algorithms etc., which address the issue of limited instrumentation and its effects on resolution and accuracy in health monitoring systems are paramount to a damage diagnosis approach. This paper discusses an optimum sensor placement criterion suitable to the identification of structural damage for continuous health monitoring. A Kinetic Energy optimization technique and an Effective Independence Method are analyzed and numerical and theoretical issues are addressed for a cable-stayed bridge. Its application to a cable-stayed bridge is discussed to optimize the sensor placement for identification and control purposes.

Sensor clustering technique for practical structural monitoring and maintenance

  • Celik, Ozan;Terrell, Thomas;Gul, Mustafa;Catbas, F. Necati
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.273-295
    • /
    • 2018
  • In this study, an investigation of a damage detection methodology for global condition assessment is presented. A particular emphasis is put on the utilization of wireless sensors for more practical, less time consuming, less expensive and safer monitoring and eventually maintenance purposes. Wireless sensors are deployed with a sensor roving technique to maintain a dense sensor field yet requiring fewer sensors. The time series analysis method called ARX models (Auto-Regressive models with eXogeneous input) for different sensor clusters is implemented for the exploration of artificially induced damage and their locations. The performance of the technique is verified by making use of the data sets acquired from a 4-span bridge-type steel structure in a controlled laboratory environment. In that, the free response vibration data of the structure for a specific sensor cluster is measured by both wired and wireless sensors and the acceleration output of each sensor is used as an input to ARX model to estimate the response of the reference channel of that cluster. Using both data types, the ARX based time series analysis method is shown to be effective for damage detection and localization along with the interpretations and conclusions.

Application of Fiber Optic Sensors for Monitoring Deflection and Deformation of a Pipeline (배관 변형 및 처짐 감시를 위한 광섬유 센서의 활용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.460-465
    • /
    • 2016
  • Long pipe structures are usually installed in fixtures located with regular intervals or laid underground. Therefore, deflection and deformation could easily occur due to their weight or ground activity. A shape monitoring technique can be used effectively to evaluate the integrity of the pipe structures. Fiber Bragg grating (FBG) sensors, which have an advantage of multiplexing could be used to measure strains at multiple-points of a long structure. In this study, to evaluate the integrity of a pipeline, a shape estimation technique based on strain information was proposed. Furthermore, different experiments were conducted to verify the performance of the proposed technique. Thus, the proposed shape estimation technique can represent the shape according to the deformation of the specimen using the FBGs. Moreover, calculated deflection of the pipeline using the estimation technique showed a good agreement with the actual deflection of the pipeline.

A Technical Trend on On-Line Condition Monitoring and Diagnostics of Power Equipments (배전설비의 온라인 모니터링과 진단 기술 동향)

  • Lim, Wan-Soo;Lee, Tae-Woo;Yeo, Woon-Cheol;Lee, Sung-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1974-1975
    • /
    • 2007
  • Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system. The paper presents the results of wireless temperature monitoring of switchgear at a power plant over a two-year period.

  • PDF

Laser based impedance measurement for pipe corrosion and bolt-loosening detection

  • Yang, Jinyeol;Liu, Peipei;Yang, Suyoung;Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study proposes a laser based impedance measurement system and impedance based pipe corrosion and bolt-loosening monitoring techniques under temperature variations. For impedance measurement, the laser based impedance measurement system is optimized and adopted in this paper. First, a modulated laser beam is radiated to a photodiode, converting the laser beam into an electric signal. Then, the electric signal is applied to a MFC transducer attached on a target structure for ultrasonic excitation. The corresponding impedance signals are measured, re-converted into a laser beam, and radiated back to the other photodiode located in a data interrogator. The transmitted impedance signals are treated with an outlier analysis using generalized extreme value (GEV) statistics to reliably signal off structural damage. Validation of the proposed technique is carried out to detect corrosion and bolt-loosening in lab-scale carbon steel elbow pipes under varying temperatures. It has been demonstrated that the proposed technique has a potential to be used for structural health monitoring (SHM) of pipe structures.

Development of a Damage Monitoring Technique for Jacket-type Offshore Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 활용한 재킷식 해양구조물의 손상 감지 기법 개발)

  • Park, Hyun-Jun;Koo, Ki-Young;Yi, Jin-Hak;Yun, Chung-Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.399-408
    • /
    • 2011
  • Development of smart sensors for structural health monitoring and damage detection has been advanced remarkably in recent years. Nowadays fiber optic sensors, especially fiber Bragg grating (FBG) sensors, have attracted many researchers' interests for their attractive features, such as multiplexing capability, durability, lightweight, electromagnetic interference immunity. In this paper, a damage detection approach of jacket-type offshore structures by principal component analysis (PCA) technique using FBG sensors are presented. An experimental study for a tidal current power plant structure as one of the jacket-type offshore structures was conducted to investigate the feasibility of the proposed method for damage monitoring. It has been found that the PCA technique can efficiently eliminate environmental effects from measured data by FBG sensors, resulting more damage-sensitive features under various environmental variations.

Strain monitoring of reinforced concrete with OTDR-based FBG interrogation technique

  • Dyshlyuk, Anton V.;Makarova, Natalia V.;Vitrik, Oleg B.;Kulchin, Yuri N.;Babin, Sergey A.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.343-350
    • /
    • 2017
  • An experimental study is presented of the application of fiber Bragg grating (FBG) interrogation method based on optical time-domain reflectometery (OTDR) to monitoring strain in bent reinforced concrete beams. The results obtained with the OTDR-based method are shown to agree well with the direct spectral measurements. Strain sensitivity, resolution and measurement range amounted to $0.0028dB/{\mu}strain$; $30{\mu}strain$; $4000{\mu}strain$, correspondingly. Significant differences are observed in surface and inner deformations of the test beams which can be attributed to different mechanical properties of concrete and steel reinforcement. The prospects of using OTDR-based FBG interrogation technique in real-life applications are discussed.