• Title/Summary/Keyword: headlight detection

Search Result 14, Processing Time 0.016 seconds

Vehicle Tracking System using HSV Color Space at nighttime (HSV 색 공간을 이용한 야간 차량 검출시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • We suggest that HSV Color Space may be used to detect a vehicle detecting system at nighttime. It is essential that a licence plate should be extracted when a vehicle is under surveillance. To do so, a licence plate may be enlarged to certain size after the aimed vehicle is taken picture from a distance by using Pan-Tilt-Zoom Camera. Either Mean-Shift or Optical Flow Algorithm is generally used for the purpose of a vehicle detection and trace, even though those algorithms have tendency to have difficulty in detection and trace a vehicle at night. By utilizing the fact that a headlight or taillight of a vehicle stands out when an input image is converted in to HSV Color Space, we are able to achieve improvement on those algorithms for the vehicle detection and trace. In this paper, we have shown that at night, the suggested method is efficient enough to detect a vehicle 93.9% from the front and 97.7% from the back.

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • 이규봉;정연숙;박호식;박동희;남기환;한준희;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.797-800
    • /
    • 2003
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plates center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate revered by the learning pattern, the effort of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

Area Extraction of License Plates Using a Artificial Neural Network (인공신경망을 이용한 번호판 영역 추출)

  • hwang, suen ki;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plate.s center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

  • PDF

Detecting and Tracking Vehicles at Local Region by using Segmented Regions Information (분할 영역 정보를 이용한 국부 영역에서 차량 검지 및 추적)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.929-936
    • /
    • 2007
  • The novel vision-based scheme for real-time extracting traffic parameters is proposed in this paper. Detecting and tracking of vehicle is processed at local region installed by operator. Local region is divided to segmented regions by edge and frame difference, and the segmented regions are classified into vehicle, road, shadow and headlight by statistical and geometrical features. Vehicle is detected by the result of the classification. Traffic parameters such as velocity, length, occupancy and distance are estimated by tracking using template matching at local region. Because background image are not used, it is possible to utilize under various conditions such as weather, time slots and locations. It is performed well with 90.16% detection rate in various databases. If direction, angle and iris are fitted to operating conditions, we are looking forward to using as the core of traffic monitoring systems.