• 제목/요약/키워드: headed studs

검색결과 38건 처리시간 0.025초

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.

Stud reinforcement in beam-column joints under seismic loads

  • Abdollahzadeh, Gholamreza;Ghalani, Saeed Eilbeigi
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.297-317
    • /
    • 2016
  • Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints that causes significant bar congestion. Increase in congestion of shear reinforcement in joint core (connection zone), leads to increase accomplishment problems. The congestion may also lead to diameter limitations on the beam bars relative to the joint dimensions. Using double headed studs instead of conventional closed hoops in reinforced concrete beam-column joints reduces congestion and ensures easier assembly of the reinforcing cage. The purpose of this research is evaluating the efficiency of the proposed reinforcement. In this way, 10 groups of exterior beam-column joints are modeled. Each group includes 7 specimens by different reinforcing details in their joint core. All specimens are modeled by using of ABAQUS and analyzed subjected to cyclic loading. After verification of analytical modeling with an experimental specimen, 3D nonlinear specimens are modeled and analyzed. Then, the effect of amount and arrangement of headed studs on ductility, performance, ultimate strength and energy absorption has been studied. Based on the results, all joints reinforced with double headed studs represent better performance compared with the joints without shear transverse reinforcement in joints core. The behavior of the former is close to joints reinforced with closed hoops and cross ties according to the seismic design codes. By adjusting the arrangement of double-headed studs, the decrease in ductility, performance, ultimate moment resistant and energy absorption reduce to 2.61%, 0.90%, 0.90% and 1.66% respectively compared with the joints reinforced by closed hoops on the average. Since the use of headed studs reduces accomplishment problems, these amounts are negligible. Therefore, use of double-headed studs has proved to be a viable option for reinforcing exterior beam-column joints.

FE validation of the equivalent diameter calculation model for grouped headed studs

  • Spremic, Milan;Pavlovic, Marko;Markovic, Zlatko;Veljkovic, Milan;Budjevac, Dragan
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.375-386
    • /
    • 2018
  • Existing design codes for steel-concrete composite structures give only general information about the shear connection provided by headed studs in group arrangement. Grouting of the openings in prefabricated concrete slabs, where the grouped headed studs are placed in the deck pockets is alternative to cast-in-place decks to accomplish fast execution of composite structures. This paper considers the possibility to reduce the distance between the studs within the group, bellow the Eurocode limitations. This may lead to increased competitiveness of the prefabricated construction because more studs are placed in the group if negative effectives of smaller distances between studs are limited. The main purpose of this work is to investigate these limits and propose an analytical calculation model for prediction of the shear resistance of grouped stud arrangements in the deck pockets. An advanced FEA model, validated by results of push-out experiments, is used to analyze the shear behavior of the grouped stud with smaller distance between them than recommended by EN 1994-1. Calculation model for shear resistance, which is consistent with the existing Eurocode rules, is proposed based on a newly introduced equivalent diameter of the stud group, $d_G$. The new calculation model is validated by comparison to the results of FE parametric study. The distance between the studs in the longitudinal direction and the number of stud rows and columns in the group are considered as the main variables.

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming

  • Degtyarev, Vitaliy V.;Hicks, Stephen J.;Hajjar, Jerome F.
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.293-309
    • /
    • 2022
  • Accurate design models for predicting the shear resistance of headed studs in solid concrete slabs are essential for obtaining economical and safe steel-concrete composite structures. In this study, symbolic regression with genetic programming (GPSR) was applied to experimental data to formulate new descriptive equations for predicting the shear resistance of studs in solid slabs using both normal and lightweight concrete. The obtained GPSR-based nominal resistance equations demonstrated good agreement with the test results. The equations indicate that the stud shear resistance is insensitive to the secant modulus of elasticity of concrete, which has been included in many international standards following the pioneering work of Ollgaard et al. In contrast, it increases when the stud height-to-diameter ratio increases, which is not reflected by the design models in the current international standards. The nominal resistance equations were subsequently refined for use in design from reliability analyses to ensure that the target reliability index required by the Eurocodes was achieved. Resistance factors for the developed equations were also determined following US design practice. The stud shear resistance predicted by the proposed models was compared with the predictions from 13 existing models. The accuracy of the developed models exceeds the accuracy of the existing equations. The proposed models produce predictions that can be used with confidence in design, while providing significantly higher stud resistances for certain combinations of variables than those computed with the existing equations given by many standards.

Machine learning-based probabilistic predictions of shear resistance of welded studs in deck slab ribs transverse to beams

  • Vitaliy V. Degtyarev;Stephen J. Hicks
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.109-123
    • /
    • 2023
  • Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.