• Title/Summary/Keyword: head robot

Search Result 146, Processing Time 0.032 seconds

Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot-2)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1539-1543
    • /
    • 2004
  • This paper describes platform overview, system integration and dynamic walking control of the humanoid robot, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. KHR-2 has totally 41 DOF (Degree Of Freedom). Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. In order to control all joints, distributed control architecture is adopted to reduce the computation burden of the main controller and to expand the devices easily. The main controller attached its back communicates with sub-controllers in real-time by using CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operating System) for fast development of main control program and easy extension of peripheral devices. And RTX, HAL(Hardware Abstraction Layer) extension program, is used to realize the real-time control in Windows XP environment. We present about real-time control of KHR-2 in Windows XP with RTX and basic walking control algorithm. Details of the KHR-2 are described in this paper.

  • PDF

Emotional Behavior Decision Model Based on Linear Dynamic System for Intelligent Service Robots (지능형 서비스 로봇을 위한 선형 동적 시스템 기반의 감정 기반 행동 결정 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.760-768
    • /
    • 2007
  • This paper introduces an emotional behavior decision model based on linear system for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of intelligent service robots and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear dynamic system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented a cyber robot and an emotional head robot using 3D character for verifying the performance of the proposed emotional behavior decision model.

Implementation of Adaptive Movement Control for Waiter Robot using Visual Information

  • Nakazawa, Minoru;Guo, Qinglian;Nagase, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.808-811
    • /
    • 2009
  • Robovie-R2 [1], developed by ATR, is a 110cm high, 60kg weight, two wheel drive, human like robot. It has two arms with dynamic fingers. It also has a position sensitive detector sensor and two cameras as eyes on his head for recognizing his surrounding environment. Recent years, we have carried out a project to integrate new functions into Robovie-R2 so as to make it possible to be used in a dining room in healthcare center for helping serving meal for elderly. As a new function, we have developed software system for adaptive movement control of Robovie-R2 that is primary important since a robot that cannot autonomously control its movement would be a dangerous object to the people in dining room. We used the cameras on Robovie-R2's head to catch environment images, applied our original algorithm for recognizing obstacles such as furniture or people, so as to control Roboie-R2's movement. In this paper, we will focus our algorithm and its results.

  • PDF

Implementation of an Intelligent Action of a Small Biped Robot (소형 2족 보행 로봇의 지능형 동작의 구현)

  • Lim Seun ho;Cho Jung san;Yi Soo-Yeong;Ahn Hee-Wook;Sung Young Whee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.825-832
    • /
    • 2004
  • A small biped robot system is designed and implemented. The robot system consists of a mechanical robot body, a control system, a sensor system, and a user interface system. The robot has 12 dofs for two legs, 6 dofs for two arms, 2 dofs for a neck, so it has total 20 dofs to have dexterous motion capability. The implemented robot has the capability of performing intelligent actions such as playing soccer, resisting external forces, and walking on a slope terrain. In this paper, we focus on the robot's capability of playing soccer. The robot uses a color CCD camera attached on its head as a sensor for playing soccer. To make the robot play soccer with only one camera, an algorithm, which consists of searching, localization, and motion planning, is proposed and experimented. The results show that the robot can play soccer successfully in the given environments.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.

Robotic Surgery in Head and Neck (두경부 영역에서의 로봇 수술)

  • Tae, Kyung;Shin, Kwang-Soo
    • Korean Journal of Bronchoesophagology
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • Organ preservation surgery and minimally invasive surgery have been developed during the past 20 years with major focus on transoral laser surgery, endoscopic surgery, and robotic surgery. Two major robotic surgeries in head and neck area are transoral robotic surgery (TORS) and robotic thyroidectomy. Transoral robotic surgery is a safe and efficacious method of surgical treatment of oropharyngeal. hypopharyngeal and laryngeal neoplasm. Advantages of the technique include adequate ability to visualize and manipulate lesions with two hands. TORS can provide magnified three dimensional views and overcome the limitation resulting from the "line of sight" which hinders transoral laser procedure. The swallowing function following transoral robotic surgery show superior and patients were able to retain or rapidly regain swallowing function in the majority of cases. Recently, robotic thyroidectomy has also been developed to overcome the [imitation of endoscopic thyroidectomy. Robotic thyroidectomy by a gasless unilateral axillo-breast or axillary approach using a da Vinci S Surgical Robot is a feasible and cosmetically excellent procedure. It can be a promising alternative to endoscopic thyroidectomy or conventional open thyroidectomy.

  • PDF

A Mobile Robot for Nuclear Power Plant Applications

  • Kim, Chang-Hoi;Seo, Yong-Chil;Cho, Jai-Wan;Choi, Young-Soo;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.803-807
    • /
    • 2003
  • Tele-operation and remote monitoring techniques are essential and important technologies for performing the inspection and repair tasks effectively in nuclear power plants. This paper presents the application of a mobile robot for the remote monitoring and inspection of the Calandria faces, where human access is limited because of the high-level radioactive environments during full power operation. The mobile robot was designed with reconfigurable crawler type of wheels attached on the front and rear side in order to pass through the ditch. The extendable mast, mounted on the mobile robot, can be extended up to 8 m vertically. This robot was also equipped a visible CCD/thermal infrared inspection head module and a stereo camera module for the enhancement of visual inspection.

  • PDF

Development of a Grinding Robot System for the Engine Cylinder Liner's Oil Groove (실린더 라이너 오일그루브 가공 로봇 시스템 개발)

  • Noh, Tae-Yang;Lee, Yun-Sik;Jung, Chang-Wook;Oh, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

A Face Robot Actuated with Artiflcial Muscle (인공근육을 이용한 얼굴로봇)

  • 곽종원;지호준;정광목;남재도;전재욱;최혁렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.991-999
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an efficient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with artificial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, eyes as well as provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is sufficient to generate six fundamental facial expressions such as surprise, fear, anger, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol fur the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

Obstacle Detection for Generating the Motion of Humanoid Robot (휴머노이드 로봇의 움직임 생성을 위한 장애물 인식방법)

  • Park, Chan-Soo;Kim, Doik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1115-1121
    • /
    • 2012
  • This paper proposes a method to extract accurate plane of an object in unstructured environment for a humanoid robot by using a laser scanner. By panning and tilting 2D laser scanner installed on the head of a humanoid robot, 3D depth map of unstructured environment is generated. After generating the 3D depth map around a robot, the proposed plane extraction method is applied to the 3D depth map. By using the hierarchical clustering method, points on the same plane are extracted from the point cloud in the 3D depth map. After segmenting the plane from the point cloud, dimensions of the planes are calculated. The accuracy of the extracted plane is evaluated with experimental results, which show the effectiveness of the proposed method to extract planes around a humanoid robot in unstructured environment.