• 제목/요약/키워드: head/disk

Search Result 216, Processing Time 0.213 seconds

Investigation of Interface between Slider and Plastic Disk for Optical Head (Optical head를 고려 한 slider와 plastic disk의 interface에 대한 연구)

  • 박진무;정구현;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • Near-field recording NFR), advanced optical storage technology, relies on maintaining a small gap between the optical head and the media. This can be accomplished by utilizing the flying optical head concept as in the magnetic recording. In this research, slider/suspension system and plastic disk are tested for their head/disk interface performance. CSS tests are conducted to monitor the frictional and flying characteristics of sliders.

  • PDF

Investigation of Head-Disk Impact for Development of Ultra-Low Flying HDI (극저부상 HDI 개발을 위한 Head-Disk Impact 연구)

  • 조언정;박노열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.122-126
    • /
    • 2001
  • Magnetic hard disk drive is continually being pushed to reduce head-disk spacing for higher recording densities. The current minimum spacing between the air-bearing slider and disk has been reduced to under 15 nm. In this work, it was investigated if flying height could be lowered under the height of laser bumps. With the reduction of the spinning speed, the flying height was decreased under the height of laser bumps. When a head swept between landing zone and data zone, the head-disk impact was monitored using AE and friction signals. It is demonstrated that magnetic hard disk drive could be operated without tribological failures under the height of laser bumps.

  • PDF

A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop (Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구)

  • 조언정
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

A Study on the Surface Damage between Head/Disk Interfaces by Using AFM (AFM을 이용한 Head/Disk의 표면 파손에 관한 고찰)

  • 이성창;정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.167-174
    • /
    • 1998
  • In this work the surface damage of head and disk of a hard disk drive was analysed using an Atomic Force Microscope. The initial damage of the disk occurred by generation of extremely small wear particles. Also it was shown that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

Characteristics of friction and stiction in head/disk interface (헤드/디스크 시스템의 마찰력 측정 및 stiction 특성)

  • 이성창;정구현;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.45-50
    • /
    • 1997
  • In recent years the recording density of hard disk has been increasing largely due to the decreasing flying height of head. However, as the flying height is decreased the reliability issue becomes ever more critical. This is because the reliability and durability of hard disk is related to the head/disk interaction as the two components come into partial or full contact. In this work characteristics of friction and stiction in head/disk interface was investigated using constant speed drag test and CSS(contact-start-stop) test. The purpose of this research is to identify the frictional properties of head/disk interface

  • PDF

Analysis of Disk Filter Head Losses due to the Shapes of Disk Grooves in Drip Irrigation System (점적관개용 디스크 여과기의 디스크 홈 단면 형상에 따른 수두 손실 특성 분석)

  • Jung, Seung-Yeon;Choi, Won;Choi, Jin-Yong;Kim, Maga;Lee, Yoonhee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.25-36
    • /
    • 2018
  • Drip irrigation system is a low energy cost method which can efficiently save and supply water by dropping water slowly on the crop's root zone during crop growth. In the drip irrigation system, disk filters take an important role to physically remove impurity (inorganic and suspended organic) particles present in agricultural water which can cause emitter clogging. For the purpose, both top-and-bottom surfaces of the disk are grooved in micron size flowing from outside to inside. However, many congested flow paths in disk filter media incur higher head loss of inflow water resulting in relatively decreasing velocities depending on operation time than sand and mesh filters. Therefore, it is important to optimize the structure of disk filter in micro irrigation system. The head loss of disk filter media takes also charge of more than 60 % of total head loss in whole disk filter. This study is to find the appropriate cross-sectional shape of the disk groove to minimize the head loss by executing the experiment. The experiment used three disk filters that have similar filter body but have a half-elliptic and two kinds of triangular cross sections. The experimental results showed that the disk filter with half-elliptic cross sections of disk grooves have less head loss than the disk filter with regular triangular one.

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF

Surface damage analysis of Head/Disk interface using AFM (AFM을 이용한 Head/Disk의 표면파손에 관한 고찰)

  • 정구현;이성창;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.357-361
    • /
    • 1997
  • In this work surface damage of head and disk of head disk drive was analysed using an Atomic Force Microscpoe. The initial damage of the disk occurred by generation of extermely small wear particles. Also it was show that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

Stiction and AE Characteristics of Hard Disk Drive under Various Environmental Conditions (환경 조건에 따른 하드디스크의 Stiction 및 AE 특성)

  • 박용식;성인하;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Hard disk drives operate in various environmental conditions. Thus, it is necessary to assess the reliability of the head/disk interface under these conditions. In this work, stiction and acoustic emission signals were investigated under different temperature, humidity, and ambient pressure conditions. Also, track average amplitude was observed for disk failure in N$_2$environment. It is shown that failure of the head/disk interface occurs more readily at high temperature and low ambient pressure conditions.

Shock Analysis of Head and Disk in Hard Disk Drive According to Various Rotating Speed (하드디스크 드라이브의 회전속도 변화에 따른 디스크와 헤드의 충격해석)

  • 박대경;박노철;박영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1075-1082
    • /
    • 2004
  • This research demonstrates the shock response analysis of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. Head-suspension system is modeled as the cantilever in order to get simulation results. Simulation results of HDA are calculated by Runge-Kutta method. Finally, shock responses of head and disk are analyzed according to the change of the rotating speed of the disk.