• Title/Summary/Keyword: hazard map generation

Search Result 12, Processing Time 0.02 seconds

Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart

  • Okada, Jun-ichi;Washio, Takumi;Sugiura, Seiryo;Hisada, Toshiaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.295-303
    • /
    • 2019
  • A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted drug-induced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.

Analysis of the Status of Mine and Methods of Mine Geospatial Information Construction Technology for Systematic Mine Management (체계적인 광산관리를 위한 광산현황 및 광산공간정보 구축 기술 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.355-361
    • /
    • 2018
  • Mining is important as a national key industry that supplies energy and raw materials that are the basis for industrial development. On the other hand, mine development is necessarily accompanied by mineralization, for example, ground subsidence, heavy metal pollution, and water pollution. The mine hazard has a large range of damage, and it takes much time and cost to recover. In addition, there is a need for systematic mining management in order to prevent damages from occurring continuously. In this study, the present status of domestic mining industry and geospatial information construction technology for mining management were investigated. 95% of the mines surveyed were nonmetallic, and limestone mines accounted for 67%, and the constructed mine spatial information is not constructed with 3D geospatial information due to 2D current status, section, and geological map. Considering the results of the survey and analysis of 3D laser scanner and characteristics of Korean mine, handheld scanner is considered to be the most suitable method for constructing mine geospatial information. In addition, the data acquired through the 3D laser scanner can effectively visualize the object, and it can contribute to the systematic management of mining because it can be used for various purposes such as generation of drawings and calculation of volume.