• Title/Summary/Keyword: harvesting system

Search Result 687, Processing Time 0.029 seconds

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

A Survey on RF Energy Harvesting System with High Efficiency RF-DC Converters

  • Khan, Danial;Basim, Muhammad;Ali, Imran;Pu, YoungGun;Hwang, Keum Cheol;Yang, Youngoo;Kim, Dong In;Lee, Kang-Yoon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-30
    • /
    • 2020
  • Radio frequency (RF) energy harvesting technology have become a reliable and promising alternative to extend the lifetime of power-constrained wireless networks by eliminating the need for batteries. This emerging technology enables the low-power wireless devices to be self-sustaining and eco-friendly by scavenging RF energy from ambient environment or dedicated energy sources. These attributes make RF energy harvesting technology feasible and attractive to an extended range of applications. However, despite being the most reliable energy harvesting technology, there are several challenges (especially power conversion efficiency, output DC voltage and sensitivity) poised for the implementation of RF energy harvesting systems. In this article, a detailed literature on RF energy harvesting technology has been surveyed to provide guidance for RF energy harvesters design. Since signal strength of the received RF power is limited and weak, high efficiency state-of-the-art RF energy harvesters are required to design for providing sufficient DC supply voltage to wireless networks. Therefore, various designs and their trade-offs with comprehensive analysis for RF energy harvesters have been discussed. This paper can serve as a good reference for the researchers to catch new research topics in the field of RF energy harvesting.

Study on the Optimum Harvest Timing for Different Operational Systems of Rice (벼의 수확작업 체계별 수확정기 결정에 관한 연구)

  • 이종호;강화석;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.88-99
    • /
    • 1978
  • In this study, rice harvesting systems suitable to Korean situations and the optimum timing of these systems were determined, respectively, based on experimentally determined factors such as filed yield and the milling quantity and quality measured at various levels of the grain moisture content at harvest. Rice varieties used for the experiment were the AKIBARE (Japonica-type) and the SUWEON 251 (high yielding TONGIL sister-line variety), The harvesting systems studied by the experimental work of this study were traditional system with both the wet material and dry-material threshing system by use of binder with both the dry-material and wet-material threshings, and system by use of combine. Grain samples were taken from final products of the paddy rice harvested from the experiment a fields for each system to measure the recovery rates of the milled rice. The results may be summarized as follows; 1. The milling recovery rate of the AKIBARE variety had highest value within the range of the grain moisture at harvest, showing from 21 to 26 percent. The head-rice recovery for the same variety was a little greater in the wet-material threshing than in the dry-material threshing , higher values of which , were 20 to 25 percent , seen within the range of grain moisture at harvest regardless of the harvesting systems tested. 2. The milling recovery of the SUWEON 251 , when tested for different harvesting systems and harvesting grain moisture, did not show a statistically significant different. In contrast , head-rice recovery for the systems operated by the wet-material threshing was much greater than that by the -material threshing. The difference of the recoveries between these systems range from 2.6 to 4.7 percent. 3. An assessment of the optimum period of -harvest timing for each of the harve\ulcornersting systems tested were made bJ.sed on (a) the maximum total milled-rise yield and (b) the percentage reduction in the total milled-rice yield due to untimely harvest operations. The optimum period determined are: 23-19% for the ATD, AC, STD, SBW, STW systems, 25-21% for the ATW ani ABW systems, and 27-18% for the ABD, SBD, and SC systems, respectively.

  • PDF

Development of Far Field RF Power Harvesting Testbed (원거리 무선 전력 하베스팅 테스트 시스템 개발)

  • Kim, Min Jae;Lim, Wonseob;Bae, Jongseok;Park, Ju Hyun;Park, Young Jun;Lee, Jong Min;Trinh-Van, Son;Kim, Dong In;Lee, Kang Yoon;Hwang, Keum Cheol;Yang, Youngoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1922-1930
    • /
    • 2015
  • This paper presents the system design, implement, and measurement results of the testbed for the wireless RF energy harvesting system. The developed testbed can be used for RF power transfer and data communication using the 2.4 GHz and 900 MHz frequency bands. It allows to evaluate the system performances for the RF power and data transmission. The testbed can also be used to develop algorithms for efficient energy harvesting.

Energy harvesting by Tesla Turbine

  • Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.132-133
    • /
    • 2021
  • In recent years, energy harvesting from natural sources and waste heat has been attracting more attention from researchers in response to ever-growing energy demands, high energy prices, and climate-change-mitigation purposes. It is also an important step towards future sustainable energy usages. In thermal dynamic cycles, expanders are playing as the most important equipment for waste heat recovery and energy harvesting as well. As a kind of expander, the bladeless turbine has a promising future and more widely using owning its advantages on relatively long life, good off-design performance, easy operation cleaning and maintenance, a simple structure, no blade corrosion, and low manufacturing costs. There are numerous studies about using the Tesla Turbine as a key technology for energy harvesting in a wide range of applications and conditions. They are presented to help identify technologies that have sufficient potential for applicating to our life and marine industrial engineering. This review paper, initially, presents an overview of current studies both theoretical and experimental of Tesla Turbine usage for waste heat recovery alongside its challenges and investigation on the effect of its configuration, working fluid selection as well. To conclude, future perspectives besides possible ways of transforming waste heat energy to electricity or work, which leads to circular energy, are discussed. The ambition of this paper is to act as a first-hand reference, through the well-defined possible directions, to the young researchers and senior scientists.

  • PDF

Energy Harvesting from Bio-Organic Substance Using Microbial Fuel Cell and Power Conditioning System (미생물 연료 전지와 전력 조절 시스템을 이용한 생체 유기 물질로부터의 전력 생산)

  • Yeo, Jeongjin;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.242-247
    • /
    • 2017
  • This study presents a bio-chemical energy harvesting system which can generate electric power from bioorganic substance contained in vermicompost. It produced electricity by inoculating microbial fuel cell(MFC) with earthworm-composted food waste. The generated electricity was converted into usable voltage level for mobile electronics through power conditioning circuits. The implemented prototype showed $200{\mu}W$ of maximum output electric power, which successfully supplied a beacon device which continuously transmitted data to nearby smartphone without a battery. The proposed system can help develop portable or bio-mimetic energy supply for sustainable use with further improvement.

NONSELECTIVE HARVESTING OF A PREY-PREDATOR COMMUNITY WITH INFECTED PREY

  • Chattopadhyay, J.;Ghosal, G.;Chaudhuri, K.S.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.835-850
    • /
    • 1999
  • The present paper deals with the problem of nonselective harvesting in a partly infected prey and predator system in which both the susceptible prey and the predator follow the law of logistic growth and some preys avoid predation by hiding. The dynamical behaviour of the system has been studied in both the local and global sense. The optimal policy of exploitation has been derived by using Pontraygin's maximal principle. Numerical analysis and computer simulation of the results have been performed to investigate the golbal properties of the system.

Development of a Fruit Harvesting Robot(I) -Development of a Manipulator and its Control System- (과실수확(果實收穫) 로보트에 관(關)한 연구(硏究)(I) -머니퓰레이터와 제어시스템 개발-)

  • Ryu, K.H.;Noh, S.H.;Kim, D.W.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 1988
  • This study was carried out to develop an agricultural robot for fruit harvesting. As the first step an experimental manipulator and its control system were constructed. The articulated manipulator driven by DC motors has 3 degrees-of-freedom. The manipulator has a gripper adequate for fruit harvesting and an upper arm which forms a kind of guiding channel so thai harvested fruit can pass through. Point-to-point control of joints are accomplished by a digital control system with a PID controller which consists of optical shaft encoders, power amplifiers using PWM, a microcomputer and a software. The microcomputer also computes the positions of manipulator and sequence of motions. The motion of the manipulator was to slow and rough that it would need further improvement.

  • PDF