• Title/Summary/Keyword: harvest period

Search Result 627, Processing Time 0.028 seconds

Critical Temperature for Grain Filling of Japonica Rice in Korea (우리나라 자포니카 벼 품종의 등숙 한계온도 분석)

  • Woonho Yang;Shingu Kang;Dae-Woo Lee;Mi-jin Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.225-235
    • /
    • 2023
  • Critical temperature for grain filling of three Korean japonica rice varieties was analyzed by late transplantation to induce a low temperature during grain filling period in a field study. The grain filling percentage (GFP) and grain dry weight (GDW) showed a sigmoid development for the first and second transplants in 2020 and first to third transplants in 2021. For the third transplant in 2020 and fourth transplant in 2021, the GFP and GDW reached a peak at 42 days after heading (DAH), and then decreased or remained unchanged. In non-linear regression analyses, 95% of the final GFP and GDW appeared at 49 - 62 DAH for the second transplant in 2020 and at 37 - 46 DAH and 30 - 36 DAH for the second and third transplants in 2021, respectively. At these time points, the critical seven-day moving temperature (7dMovT) was 8.4~9.4℃ for the second transplant in 2020 and 9.4~10.9℃ for the second and third transplants in 2021, depending on the grain filling traits and varieties of rice. The lowest 7dMovT was 8.4 - 8.7℃ in the three varieties. The observed lowest 7-day mean temperature (7dMT) accompanying increases in the GFP and GDW was 9.4 - 10.1℃, depending on the varieties in the third transplant of 2020 and fourth transplant of 2021. In the two transplants mentioned above, the highest 7dMT that showed no increase or decrease in grain filling traits was 8.7 - 9.1℃. The critical temperature for grain filling of japonica rice was 8.4 - 8.7℃ based on the 7dMovT and 9.1 - 9.4℃ based on the 7dMT. The previous 7dMT of 10℃ is recommended to determine the marginal harvest time for safe rice cropping since the temperature was the highest among the lowest temperature that accompanied an increase in grain filling traits.

Appropriate Working Period and Storage Characteristics Based on Residual Leaf Length of Onion (Allium cepa L.) Harvested with a Blower-type Stem Cutter (송풍식 줄기절단기에 의한 적정 양파 잎 절단 시기 및 잔여 엽장에 따른 양파 저장 특성)

  • Byeonggyu Min;Jiyoung Son;Mijin Lee;Jinseong Moon;Juhee Baek;Jaecheol Seo;Jungho Shin;Seunggwi Kwon;Soonjung Hong;Sanghee Lee
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • This study was conducted to determine the optimal working conditions when a recently developed blower-type onion stem cutter is utilized for cutting onion leaves at harvest time. The June 20 leaf cutting treatment group had the highest leaf dryness among the treatment groups (leaf dryness: 66.3%; leaf moisture content: 50.5%); the residual leaf length was 6.7 ± 3.5 cm. It is considered to have the best mechanical leaf cutting performance among the treatment groups because it is included in the optimal range of 4-10 cm. The average working speed of mechanical onion leaf cutting using the stem cutter was 0.17 m·s-1, which is approximately 3.4 times faster than the average working speed of 0.05 m·s-1 in the human leaf cutting treatment group. This is expected to save approximately 2.6 hours compared to human labor (based on one person) when working on a 10a area using this machine. In addition, the incidence of damaged bulbs in the machine leaf cutting treatment group was 1.3%, compared to 0.0% in the manual leaf cutting treatment group. This suggests that the mechanical leaf cutting treatment group had a higher average onion bulb decay rate during storage than the manual leaf cutting treatment group. When the storage characteristics of each treatment group were examined, the decay rate by bulb part (leaf connected or root connected) after 8 months of storage was higher in the treatment group with a residual leaf length of less than 5.0 cm after mechanical leaf cutting than in the treatment with a residual leaf length of more than 5.0 cm. This is thought to be due to the fact that treatments with a residual leaf length of less than 5.0 cm are more susceptible to infection by pathogens that cause decay during storage than treatments with a residual leaf length of 5.0 cm or more. Based on the results of this experiment, performance target of the experimental machine (residual leaf length after operation: 5 cm), and existing research on the optimal residual leaf length for onion harvesting, it is recommended to cut onion leaves so that the residual leaf length is 5-10 cm when using the stem cutter.

Productivity Evaluation of Rosemary Shoots using Artificial Light Sources in Multi-layer Cultivation (다단재배에서 인공광원을 이용한 로즈마리 어린순의 생산성 평가)

  • Myeong Suk Kim;Jung Seob Moon;Song Hee Ahn;Dong Chun Cheong;Min Sil Ahn;So Ra Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • This study was aimed to investigate the effects of layer-by-floor environmental conditions and lower shelf supplemental lighting on the productivity of fresh shoots when growing rosemary in multi-layer cultivation. The 10-cm cuttings from stock plants of common rosemary (Rosemarinus officinalis) were planted in a 128-hole tray, rooted, and then transplanted into pots of 750, 1,300, and 2,000 mL. Afterwards, they were placed on multi-layer shelves (width × length × height: 149 × 60 × 57 cm, 3-layer) in a two-linked greenhouse and cultivated using the sub-irrigation. The productivity of young shoots by layer of the multi-layer shelf was the highest on the third floor (top floor), but productivity decreased sharply after September due to stem lignification caused by excessive light during the summer. Conversely, the lower two layers exhibited faster growth rate of young shoots until the late cultivation period, but the quality decreased due to stem softening and leaf epinasty. To address the excessive light problem on the third floor during the summer, shading was implemented at 30% opacity in July and August, resulting in a 210% increase in rosemary young shoots count and a 162% increase in fresh weight per unit area compared to the unshaded control. To improve the lighting deficiency on the lower layer, supplemental lighting with LED at 30 W increased rosemary young shoot harvest by 168% from June to September compared to no supplemental lighting, but it decreased productivity after September. Therefore, when growing rosemary in multi-layer, it is judged that intensive production of young shoots is possible if the third floor (top layer) is shaded with 30% of light from July to August to prevent stem lignification, and the lower layer is temporarily supplemented with LED 30 W from June to September to increase young shoot growth.

Studies on the Cutting Managemente of Pasture during the Mid Summer Season I. Effect of cutting management on tall fescue dominated pasture (고온기 초지의 예취관리에 관한 연구 I. 고온기 예취방법이 tall fescue 우점초지의 재생 , 잡초발생 및 수량에 미치는 영향)

  • Seo, S.;Han, Y.C.;Park, M.S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.22-32
    • /
    • 1985
  • Optimum pasture management during the summer season is an important factor to maintain good regrowth and persistence of pasture in Korea. This experiment was carried out to investigate the effects of the cutting management on the dead plant, weed appearance, regrowth and carbohydrate reserves in stubble, and dry matter yield of tall fescue dominated pasture during the mid summer season. For the test, a split plot design with 4 replications was treated with 2 different the third cutting times (July 12 and Aug. 4) as the mainplots, and 3 different cutting heights (3, 6 and 9 cm) at the third cut as the subplots, and the experiment was done at the experimental field of the Livestock Experiment Station, in Suweon, 1984. The results obtained are summarized as follows: 1. Considering the meteorological conditions during the experimental period, the temperature was a little higher by $2^{\circ}C$ than that of average year, especially the first and second decade of August were high. And the precipitation of 1984 tended to be low when compared with the average year. 2. Temperature of soil surface and underground tended to increase by $1-3^{\circ}C$ as the stubble height was low during the summer season. 3. Regrowth leaf length and leaf area after the third cut increased significantly with the high cutting height at the third cut. 4. A significant higher total nonstructural carbohydrate (TNC) content in stubble after the third cut was observed in the high stubble cut on July 12. The results indicate that the high stubble height reserves more carbohydrates for early regrowth stage after the third cut when compared with the low stubble. On Aug. 4, however, the recovery of TNC contents after the third cut was not effective due to high temperature and rainfall. 5. The percentage of dead plant after the third cut was found to be high with the low cutting height during the mid summer season (p<0.05). 6. With the low stubble height on July 12 cut, it was appeared that the percentage of weed was significantly increased (p<0.05), and main weeds appeared after the third cut were Echinochloa crusgalli>Digitaria sanguinalis>Cyperus iria>Rumex crispus, and so on. In case of cut on Aug. 4, weed appearance was no difference at three cutting heights. 7. Dry matter yield at the third cut was increased in the plot of cutting on Aug. 4 and stubble height (p<0.05). However, yields at the fourth and fifth cut were increased with high stubble height (p<0.05), regardless of harvest time. 8. In total dry matter yield after the third cut, there was no significant difference between the cutting time and forage yield. However, total yield on July 12 was increased with the high stubble height (p<0.05). 9. From the above results, it is suggested that the 9 cm cutting height during the mid summer season is the most effective for good regrowth, weed control and forage yield of tall fescue dominated pasture.

  • PDF

Seedling - Emergence of Rice, Weedy Rice, and Echinochloa species Sown before Wintering and in the Early Spring (월동전(越冬前) 초춘(初春)에 파종(播種)한 재배(栽培)벼, 잡초성(雜草性)벼 및 피의 출현특성(出現特性))

  • Kwon, Y.W.;Lee, B.W.;Kim, D.S.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.88-99
    • /
    • 1996
  • In recent years dry direct-seeding of rice has been encouraged by the government and increasingly practiced by farmers in Korea. This has been bringing up an increased occurrence of weedy rites. Some farmers in the southern region dare to sow the rice before winter after harvest, while most farmers wish to sow as early as possible in the spring to secure the growing period, and to disperse the intensive labor in early May. The purpose of this study was to determine the feasibility of moving the sowing of rice to an earlier date under dry direct-seeding, and to elucidate the nature of emergence of an old strain of rice, weedy rites, and barnyardgrasses tinder this farming practice and their adaptive competence over present cultivate. The presently recommended rice cultivar, Dongjinbyo and an old rice strain, Dadajo which prevailed in early 1900s, almost could not emerge from soil deeper than 6cm and could emerge to only 5.3% at best from 1cm deep loamy soil field when the seeds were sown on Nov. 28. However, two strains of weedy rites being weedy for over 200 years emerged by 17.0 to 63.0% from the loamy and sandy clay loam field 1 to 6cm deep. Emergence of the weedy rites was greater in the loamy soil and at a shallow depth, and negligible from the soil depth of 9cm. Barnyardgrasses sown on Nov. 28 emerged by 13.4 to 51 % from the 1 to 3cm deep loamy soil, and 8.6 to 46.7% from the 1cm deep sandy clay loam. Echinochloa crus-galli var. crus-galli emerged more than var. praticola, and var. oryzicola least. Most of the non-emerged barnyardgrasses seem to have entered secondary dormancy. Seeding rice a month earlier than the season lowered the emergence of Dongjinbyo by ca. 10, 18, and 26%, respectively at 1, 3, and 6cm soil depths, indicating that moving the seeding date a month earlier is impractical. The old strain, Dadajo sown in the soil at a depth of 6cm responded similarly. However, the strain has shown a significantly higher ability in emergence from 9cm deep soil. Weedy rices sown a month earlier A month earlier sown weedy rices have shown very similar emergence rates at various soil depths to those sown on May 1. Barnyardgrasses have also shown similar emergence rates when sown between April 3 and May 1. Like barnyardgrasses, the old strain and weedy rices apparantly posessed a greater adaptability to emerge under lower temperatures, and from deeper soil ; Dongjinbyo${\leq}$ Echinochloa species in that order. However, emergence- speed under lower temperature(sown on April 3) was faster in the order of weedy rice

  • PDF

Improvement of Certification Criteria based on Analysis of On-site Investigation of Good Agricultural Practices(GAP) for Ginseng (인삼 GAP 인증기준의 현장실천평가결과 분석에 따른 인증기준 개선방안)

  • Yoon, Deok-Hoon;Nam, Ki-Woong;Oh, Soh-Young;Kim, Ga-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2019
  • Ginseng has a unique production system that is different from those used for other crops. It is subject to the Ginseng Industry Act., requires a long-term cultivation period of 4-6 years, involves complicated cultivation characteristics whereby ginseng is not produced in a single location, and many ginseng farmers engage in mixed-farming. Therefore, to bring the production of Ginseng in line with GAP standards, it is necessary to better understand the on-site practices of Ginseng farmers according to established control points, and to provide a proper action plan for improving efficiency. Among ginseng farmers in Korea who applied for GAP certification, 77.6% obtained it, which is lower than the 94.1% of farmers who obtained certification for other products. 13.7% of the applicants were judged to be unsuitable during document review due to their use of unregistered pesticides and soil heavy metals. Another 8.7% of applicants failed to obtain certification due to inadequate management results. This is a considerably higher rate of failure than the 5.3% incompatibility of document inspection and 0.6% incompatibility of on-site inspection, which suggests that it is relatively more difficult to obtain GAP certification for ginseng farming than for other crops. Ginseng farmers were given an average of 2.65 points out of 10 essential control points and a total 72 control points, which was slightly lower than the 2.81 points obtained for other crops. In particular, ginseng farmers were given an average of 1.96 points in the evaluation of compliance with the safe use standards for pesticides, which was much lower than the average of 2.95 points for other crops. Therefore, it is necessary to train ginseng farmers to comply with the safe use of pesticides. In the other essential control points, the ginseng farmers were rated at an average of 2.33 points, lower than the 2.58 points given for other crops. Several other areas of compliance in which the ginseng farmers also rated low in comparison to other crops were found. These inclued record keeping over 1 year, record of pesticide use, pesticide storages, posts harvest storage management, hand washing before and after work, hygiene related to work clothing, training of workers safety and hygiene, and written plan of hazard management. Also, among the total 72 control points, there are 12 control points (10 required, 2 recommended) that do not apply to ginseng. Therefore, it is considered inappropriate to conduct an effective evaluation of the ginseng production process based on the existing certification standards. In conclusion, differentiated certification standards are needed to expand GAP certification for ginseng farmers, and it is also necessary to develop programs that can be implemented in a more systematic and field-oriented manner to provide the farmers with proper GAP management education.

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF