• Title/Summary/Keyword: harmonic seismic waves

Search Result 11, Processing Time 0.026 seconds

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Development of Data Analysis Method for Surface Wave Test (표면파 지반 탐사를 위한 새로운 신호 처리기법의 개발)

  • Park, Hyung-Choon;Kim, Dong-Soo;Cho, Sung-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.237-240
    • /
    • 2007
  • The evaluation of shear modulus (or shear wave velocity) profile of site is very important in the various fields of geotechnical engineering. To obtain shear wave velocity profile, various in-situ seismic methods using surface waves have been developed. These surface wave based in-situ seismic methods have their own strength and weakness. In this study, new seismic site characterization method using the harmonic wavelet analysis of wave (HWAW) was proposed to overcome some of weaknesses in the existing surface wave based seismic site characterization methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. In order to estimate the applicability of HWAW method, field tests were performed. Through field applications and comparison with other test results, the applicability of the proposed method were verified.

  • PDF

Development of a Design Seismic Wave Time History Generation Technique Corresponding to the Recorded Seismic Wave-Based Design Response Spectrum (계측 지진파 기반 설계응답스펙트럼에 상응하는 설계 지진파 시간이력 생성 기법 개발)

  • Oh, Hyun Ju;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.687-695
    • /
    • 2021
  • With the recent occurrence of large-scale earthquakes in Korea, the importance of seismic design has greatly increased. Seismic design standards stipulate that dynamic time history analysis be performed for important or special structures. In the seismic analysis and design of such structures, determining a rational design input seismic wave is a very important factor in ensuring the reliability of the analysis and design. In the seismic design standards, rational design seismic waves must reflect the characteristics of the area (fault) and satisfy the design response spectrum for each seismic performance level. This requirement can be partially satisfied by modifying the actual seismic wave measured in the area (fault) according to the design response spectrum. In this study, a method of correcting and generating seismic wave time histories according to the design response spectrum based on actual measured seismic waves using the harmonic wavelet transform was proposed. To examine the applicability of the proposed technique, the technique was applied to earthquakes of magnitude 5.8 and 5.4, respectively, that occurred in Gyeongju (2016) and Pohang (2017), and the seismic wave time histories corresponding to the design response spectrum were modified and generated.

Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids

  • Anya, Augustine Igwebuike;Khan, Aftab
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.605-614
    • /
    • 2019
  • The present paper seeks to investigate propagation and reflection of waves at free surfaces of homogeneous, anisotropic and rotating micropolar fibre-reinforced medium with voids. It has been observed that, in particular when P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational wave and a wave due to voids. Normal mode Analysis usually called harmonic solution method is adopted in concomitant with Snell's laws and appropriate boundary conditions in determination of solution to the micropolar fibre reinforced modelled problem. Amplitude ratios which correspond to reflected waves in vertical and horizontal components are presented analytically. Also, the Reflection Coefficients are presented using numerical simulated results in graphical form for a particular chosen material by the help of Mathematica software. We observed that the micropolar fibre-reinforced, voids and rotational parameters have various degrees of effects to the modulation, propagation and reflection of waves in the medium. The study would have impact to micropolar fibre-reinforecd rotational-acoustic machination fields and future works about behavior of seismic waves.

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

An analytical model for displacement response spectrum considering the soil-resonance effect

  • Zhang, Haizhong;Zhao, Yan-Gang
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.373-386
    • /
    • 2022
  • The development of performance-based design methodologies requires a reasonable definition of a displacement-response spectrum. Although ground motions are known to be significantly affected by the resonant-like amplification behavior caused by multiple wave reflections within the surface soil, such a soil-resonance effect is seldom explicitly considered in current-displacement spectral models. In this study, an analytical approach is developed for the construction of displacement-response spectra by considering the soil-resonance effect. For this purpose, a simple and rational equation is proposed for the response spectral ratio at the site fundamental period (SRTg) to represent the soil-resonance effect based on wave multiple reflection theory. In addition, a bilinear model is adopted to construct the soil displacement-response spectra. The proposed model is verified by comparing its results with those obtained from actual observations and SHAKE analyses. The results show that the proposed model can lead to very good estimations of SRTg for harmonic incident seismic waves and lead to reasonable estimations of SRTg and soil displacement-response spectra for earthquakes with a relatively large magnitude, which are generally considered for seismic design, particularly in high-seismicity regions.

Development of a Seismic Measurement System with a reference for the Reduction of Artificial Noise (인공잡음 제거를 위한 기준점 이용 탄성파 측정시스템 개발)

  • Hwang, Hak-Soo;Lee, Tai-Sup;Sung, Nak-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.180-183
    • /
    • 1999
  • A proto-type seismic measurement system with a reference was developed to improve S/N (signal-to-noise ratio) of seismic data, especially in noisy urban areas. Two pairs of correlation measurements (the one for microphone and geophone, and another for electromagnetic (EM) loop and geophone) were carried out near Kimpo Airport and at Kimje. The spectrum analyses were also performed to investigate the correlation of two pairs of time series; one for microphone and geophone, and another for EM loop and geophone. The sound waves measured with the microphone and the geophone are highly correlated. However, differences in the reponses are readily identifiable across 200 Hz; in the vicinity of 100 Hz, the spectral energy for geophone is 20 dB higher than that for microphone, and at near 500 Hz, the spectral energy for microphone is 30 dB higher than that for geophone. Overall, the spectral energy appears concentrated on the frequency window below 600 Hz for geophone. It contrasts with the observation of dominant frequency at the range of above 200 Hz for microphone. The wave forms of EM noise (due to an ACDC inverter) measured with EM loop and geophone are consistently and highly correlated each other. The power spectrum of the EM noise for EM loop shows that the spectral energies at odd harmonic frequencies of 60 Hz are higher than those at even harmonic frequencies of 60 Hz. It is compared to the power spectrum for geophone; the spectral energies at odd harmonics are nearly same as those at even harmonic frequencies.

  • PDF

Two-dimensional imaging of shear wave velocity in the soil site using HWAW method (HWAW방법을 사용한 지반의 전단파 속도 2-D 영상화)

  • Park, Hyung-Choon;Kim, Dong-Soo;Kim, Jong-Tea;Park, Hyun-Jun;Bang, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.7-13
    • /
    • 2008
  • To obtain a shear-wave velocity profile in geotechnical practice, various seismic investigation methods which have their own strength and weakness are being frequently used. Generally, geotechnical site have lateral variation of the properties, so it is needed to determine 2-dimensional shear wave velocity imaging of the site. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to determination of 2-D $V_s$ imaging. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. HWAW method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise. HWAW method determine detailed local $V_s$ profile because one experimental setup which consists of one pair of receivers with spacing of 1~3m is used to determine the dispersion curve of the whole depth. So, 2-D Vs imaging with relatively high resolution can be determined through a series of HWAW test. In order to estimate the applicability of HWAW method, field tests were performed in 4 sites. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

  • PDF

Evaluation of 2D Shear Wave Velocity Imaging of Subground Using HWAW Method (HWAW 기법을 이용한 지반의 2차원 전단파 속도 평가)

  • Kim, Jong-Tae;Park, Hyung-Choon;Bang, Eun-Seok;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • Two-dimensional imaging of $V_s$ profile becomes more important in Korea because of the large horizontal variation of soil stiffness. To obtain a shear-wave velocity profile in geotechnical practice, various seismic nondestructive investigation methods are being frequently used. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to the determination of $V_s$ profile to overcome some of weaknesses in the existing surface wave methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform has been developed to determine phase and group velocities of waves. Field testing of this method is relatively simple and fast because one experimental setup which consists of one pair of receivers is needed to determine $V_s$ profile of site. The proposed method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise, and uses single array inversion which considers receiver locations. Field tests were performed in 2 sites in order to evaluate accuracy of test method and estimate the applicability of 2-D imaging by HWAW method. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.