• Title/Summary/Keyword: hardware-aware NAS

Search Result 2, Processing Time 0.014 seconds

Training-Free Hardware-Aware Neural Architecture Search with Reinforcement Learning

  • Tran, Linh Tam;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.855-861
    • /
    • 2021
  • Neural Architecture Search (NAS) is cutting-edge technology in the machine learning community. NAS Without Training (NASWOT) recently has been proposed to tackle the high demand of computational resources in NAS by leveraging some indicators to predict the performance of architectures before training. The advantage of these indicators is that they do not require any training. Thus, NASWOT reduces the searching time and computational cost significantly. However, NASWOT only considers high-performing networks which does not guarantee a fast inference speed on hardware devices. In this paper, we propose a multi objectives reward function, which considers the network's latency and the predicted performance, and incorporate it into the Reinforcement Learning approach to search for the best networks with low latency. Unlike other methods, which use FLOPs to measure the latency that does not reflect the actual latency, we obtain the network's latency from the hardware NAS bench. We conduct extensive experiments on NAS-Bench-201 using CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets, and show that the proposed method is capable of generating the best network under latency constrained without training subnetworks.

Trend of Edge Machine Learning as-a-Service (서비스형 엣지 머신러닝 기술 동향)

  • Na, J.C.;Jeon, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.44-53
    • /
    • 2022
  • The Internet of Things (IoT) is growing exponentially, with the number of IoT devices multiplying annually. Accordingly, the paradigm is changing from cloud computing to edge computing and even tiny edge computing because of the low latency and cost reduction. Machine learning is also shifting its role from the cloud to edge or tiny edge according to the paradigm shift. However, the fragmented and resource-constrained features of IoT devices have limited the development of artificial intelligence applications. Edge MLaaS (Machine Learning as-a-Service) has been studied to easily and quickly adopt machine learning to products and overcome the device limitations. This paper briefly summarizes what Edge MLaaS is and what element of research it requires.