• Title/Summary/Keyword: hardware platform

Search Result 591, Processing Time 0.034 seconds

A Design of Platform for Embedded System's development (임베디드 시스템 플랫폼 개발을 위한 시뮬레이션 환경 구현)

  • Lee, Joong-Hee;Oh, Hyun-Seok;Sung, Kwang-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.781-782
    • /
    • 2006
  • This treatise proposed environment for Embedded system's development. Virtual platform can help to solve problem that hardware designer can experience at design process of hardware. Compose circuit of most suitable that is verified before mix parts by various kinds method and compose circuit by board level because can do simulation with software and software that is optimized to hardware and offer flexibility that can test. Therefore, can shorten expense that is cost in development and time. Embody development platform for 8051 systems for verification of development platform, and compose and verified system in various kinds structure.

  • PDF

The Development of Reusable SoC Platform based on OpenCores Soft Processor for HW/SW Codesign

  • Bin, Young-Hoon;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.376-382
    • /
    • 2008
  • Developing highly cost-efficient and reliable embedded systems demands hardware/software co-design and co-simulation due to fast TTM and verification issues. So, it is essential that Platform-Based SoC design methodology be used for enhanced reusability. This paper addresses a reusable SoC platform based on OpenCores soft processor with reconfigurable architectures for hardware/software codesign methodology. The platform includes a OpenRISC microprocessor, some basic peripherals and WISHBONE bus and it uses the set of development environment including compiler, assembler, and debugger. The platform is very flexible due to easy configuration through a system configuration file and is reliable because all designed SoC and IPs are verified in the various test environments. Also the platform is prototyped using the Xilinx Spartan3 FPGA development board and is implemented to a single chip using the Magnachip cell library based on $0.18{\mu}m$ 1-poly 6-metal technology.

IoT based Pure Tone Audiometer with Software Platform Compatibility (IoT 기반의 소프트웨어 플랫폼 호환성을 갖는 순음청력 검사기)

  • Kang, Sung Ho;Lee, Jyung Hyun;Kim, Myoung Nam;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.261-270
    • /
    • 2018
  • Hearing-impaired people are increasing rapidly due to the global aging trend. Early detection of hearing loss requires an easy-to-use audiometry device for the public. Existing audiometry systems were developed as PC-based, PDA-based, or smartphone apps. These devices were often dependent on specific software platforms and hardware platforms. In this paper, we tried to improve software platform compatibility by using cross platform, and tried to implement IoT-based pure tone audiometry device which does not require sound pressure level correction due to hardware differences. Pure tone audiometry is available in a variety of ways depending on the type of hearing loss and age. Using the IoT-based audiometry device implemented in this paper, it will be possible for an app developer who lacks hardware knowledge to easily develop an app with various scenarios for hearing screening. The results of this study will contribute to overcoming the software and hardware dependency in the development of IoT-based healthcare device.

The Design of a Network based Visual Agent Platform for Tangible Space (실감 만남을 위한 네트워크 기반 Visual Agent Platform 설계)

  • Kim, Hyun-Ki;Choy, Ick;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.258-260
    • /
    • 2006
  • In this paper, we designed a embedded system that will perform a primary role of Tangible Space implementation. This hardware includes function of image capture through camera interface, image process and sending off image information by LAN (local area network) or WLAN(wireless local area network). We define this hardware as a network based Visual Agent Platform for Tangible Space

  • PDF

A Study on SoC Platform Design Supporting Dynamic Cooperation between Hardware and Software Modules (하드웨어 및 소프트웨어 모듈간의 동적 협업을 지원하는 SoC 플랫폼 설계에 관한 연구)

  • Lee, Dong-Geon;Kim, Young-Mann;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1446-1459
    • /
    • 2007
  • This paper presents and analyzes a novel technique that makes it possible to improve the performance of low-end embedded systems through SoC(System-on-a-Chip) platform supporting dynamic cooperation between hardware and software modules. Traditional embedded systems with limited hardware resources have the poor capability of carrying out multi-tasking jobs including complex calculations. The proposed SoC platform, which provides dynamic cooperation between hardware and software modules, decomposes a single specific system into tasks for given system requirements. Additionally, we also propose a technique for efficient communication and synchronization between hardware and software tasks in cooperation with each other. Several experiments are conducted to illustrate the application and efficiency of the proposed SoC platform. They show that the proposed SoC platform outperforms the traditional embedded system, where only software tasks run, as the number of memory access is increased and the system become more complex.

  • PDF

Verification Platform with ARM- and DSP-Based Multiprocessor Architecture for DVB-T Baseband Receivers

  • Cho, Koon-Shik;Chang, June-Young;Cho, Han-Jin;Cho, Jun-Dong
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.141-151
    • /
    • 2008
  • In this paper, we introduce a new verification platform with ARM- and DSP-based multiprocessor architecture. Its simple communication interface with a crossbar switch architecture is suitable for a heterogeneous multiprocessor platform. The platform is used to verify the function and performance of a DVB-T baseband receiver using hardware and software partitioning techniques with a seamless hardware/software co-verification tool. We present a dual-processor platform with an ARM926 and a Teak DSP, but it cannot satisfy the standard specification of EN 300 744 of DVB-T ETSI. Therefore, we propose a new multiprocessor strategy with an ARM926 and three Teak DSPs synchronized at 166 MHz to satisfy the required specification of DVB-T.

  • PDF

Implementation of RRS-based Base station Communication platform using General-Purpose DSP (범용 DSP를 이용한 RRS 기반 기지국 통신 플랫폼 구현)

  • Kim, Hoil;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.87-92
    • /
    • 2018
  • One of the problems with the base station equipment is that there is a large difference between the replacement time of the hardware equipment such as the base station equipment and the radio access equipment, and the evolution period of the communication standard. Therefore, the base station communication platform must be flexible enough to handle the evolving communication standards after purchase. Recent research on reconfigurable communications platforms has focused on the efficient architecture of the communications platform to meet these requirements through software downloads while still using existing hardware. This paper presents a prototype of a base station communications platform based on the ETSI standard reconfigurable architecture. The communication platform presented in this paper is implemented as an ETSI standard reconfigurable architecture using a general-purpose DSP (Digital Signal Processor). In the implemented prototype, we verify the real-time feasibility of communication protocol updates through software reconfiguration.

A Hardware-in-the-loop Platform for Modular Multilevel Converter Simulations

  • Liu, Chongru;Tian, Pengfei;Wang, Yu;Guo, Qi;Lin, Xuehua;Wang, Jiayu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1698-1705
    • /
    • 2016
  • In this paper, a hardware-in-the-loop simulation platform for MMCs is established, which connects a real time digital simulator (RTDS) and a designed MMC controller with optical fiber. In this platform, the converter valves are simulated with a small time step of 2.5 microsecond in the RTDS, and multicore technology is implemented for the controller so that the parallel valve control is distributed between different cores. Therefore, the designed controller can satisfy the requirements of real-time control. The functions of the designed platform and the rationality for the designed controller are verified through experimental tests. The results show that different modulation modes and various control strategies can be implemented in the simulation platform and that each control objective can been tracked accurately and with a fast dynamic response.

A Design of the Signal Processing Hardware Platform for OFDM Communication Systems (OFDM 통신 시스템을 위한 신호처리 하드웨어 플랫폼 개발)

  • Lee, Byung-Wook;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.498-504
    • /
    • 2008
  • In this paper, an efficient hardware platform for the digital signal processing for OFDM Communication systems is presented. The hardware platform consists of a single FPGA, two DSPs with 8000 MIPS of maximum at 1 GHz clock, 2-channel ADC and DAC supporting maximum 125 MHz sampling rate, and flexible data bus architecture, so that a wide variety of baseband signal processing algorithms for practical OFDM communication systems may be implemented and tested. The IEEE 802.16 software modem is also presented in order to verify the effectiveness and usefulness of the designed platform.

An Optimal Selection of Embedded Platform for Specific Applications (특정목적 수행을 위한 임베디드 시스템 플랫폼의 최적 선택)

  • Moon, Ho-Sun;Kim, Yong-Deak
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The goal of this paper is to determine optimal hardware platform for specific applications. In order to develop an understanding of how select the optimal platform, we focus upon the real-time embedded vehicle system for processing forward image and sound. In this paper we propose to measure parameters such as instructions, execution cycle, required memory size for program and data by using ARMulator. We have measured three types of processor cores: ARM7, ARM9 and ARM10. The results of the study indicated that the proposed methods could measure the minimal requirements of hardware platform for specific applications. By defining lower limit of hardware specifications in embedded systems, we can minimize expenses with suitable system performance without implementing the system.