• Title/Summary/Keyword: hardware optimization

Search Result 210, Processing Time 0.025 seconds

Meaurement Algorithms for EDGE Terminal Performance Test (EDGE 단말기 성능 테스트를 위한 측정 알고리즘)

  • Kang, Sung-Jin;Hong, Dae-Ki;Kim, Nam-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2719-2730
    • /
    • 2009
  • In this paper, we implement the measurement functionality for performance measurements of EDGE (Enhanced Data Rates for GSM Evolution) terminal by using software. Generally speaking, the receiving algorithms in normal MODEM cannot be used directly to a measurement system due to the lack of accuracy. Therefore, we propose a new receiver algorithm for precise EDGE signal measurements. In the proposed algorithm, 2-stage (coarse stage, fine stage) parameters estimation (symbol-timing, frequency offset, carrier phase) scheme is used. To improve the estimation accuracy, we increase the number of the received signal samples by interpolation. The proposed EDGE signal measurement algorithm can be used for verifying the hardware measurement system, and also can be used for the commercial systems through software optimization.

A Study on Energy Savings in a Network Interface Card Based on Optimization of Interrupt Coalescing (인터럽트 병합 최적화를 통한 네트워크 장치 에너지 절감 방법 연구)

  • Lee, Jaeyoul;Han, Jaeil;Kim, Young Man
    • Journal of Information Technology Services
    • /
    • v.14 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • The concept of energy-efficient networking has begun to spread in the past few years, gaining increasing popularity. A common opinion among networking researchers is that the sole introduction of low consumption silicon technologies may not be enough to effectively curb energy requirements. Thus, for disruptively boosting the network energy efficiency, these hardware enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving, by exploiting network-specific features. The IEEE 802.3az Energy Efficient Ethernet (EEE) standard is one of such efforts. EEE introduces a low power mode for the most common Ethernet physical layer standards and is expected to provide large energy savings. However, it has been shown that EEE may not achieve good energy efficiency because mode transition overheads can be significant, leading to almost full energy consumption even at low utilization levels. Coalescing techniques such as packet coalescing and interrupt coalescing were proposed to improve energy efficiency of EEE, but their implementations typically adopt a simple policy that employs a few fixed values for coalescing parameters, thus it is difficult to achieve optimal energy efficiency. The paper proposes adaptive interrupt coalescing (AIC) that adopts an optimal policy that could not only improve energy efficiency but support performance. AIC has been implemented at the sender side with the Intel 82579 network interface card (NIC) and e1000e Linux device driver. The experiments were performed at 100 M bps transfer rate and show that energy efficiency of AIC is improved in most cases despite performance consideration and in the best case can be improved up to 37% compared to that of conventional interrupt coalescing techniques.

Software Implementation of GSM Signal Measurements (GSM 신호 측정기의 소프트웨어 구현)

  • Hong, Dae-Ki;Kang, Sung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2369-2378
    • /
    • 2009
  • In this paper, we implement measurement functionality for performance measurement of the GSM (Global System for Mobile Communication) terminal by using software. Generally speaking, the receiving algorithms in normal modems cannot be used directly to the measurement system due to the lack of the algorithm accuracy. In this paper, we propose the new receiver algorithm for precise GSM signal measurements. In the receiving algorithm, 2-stage (coarse stage, fine stage) parameters estimation (symbol-timing, frequency offset, carrier phase) scheme is used. To improve the estimation accuracy, we increase the number of the received signal samples by interpolation. The proposed GSM signal measurement algorithm can be used for verifying the hardware measurement system. In addition, the proposed algorithm can be used for the commercial system through code execution speed optimization.

Design and Parameter Optimization of Virtual Storage Protocol (iATA) for Mobile Devices (모바일 기기를 위한 가상 스토리지 프로토콜(iATA)의 설계 및 파라메터 최적화)

  • Yeoh, Chee-Min;Lim, Hyo-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.267-276
    • /
    • 2009
  • Nowadays, numerous of valuable internet services are available not only for personal computer but also for mobile appliances in wireless network environment. Therefore, as the amount of contents is increased for those services, the storage limitation on mobile devices has became a significant issue. In this paper, we present a new block-level storage network protocol, iATA (Internet Advanced Technology Attachment) as a solution to the above problem. iATA is designed to transport ATA block-level data and command over the ubiquitous TCP/IP network. With iATA, a mobile appliance is able to access and control the ATA storage devices natively through network from anywhere and at anytime as if the storage devices is attached locally. We describe the concepts, design and diverse consideration of iATA protocol. Based on the benchmark experiments and application exploitation, we strongly believe that iATA as a light-weight protocol is efficient and cost-effective to be used as a storage network protocol on a resource limited device that utilizes common-off-the-shelf storage hardware and existing IP infrastructure.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.

Monovision Charging Terminal Docking Method for Unmanned Automatic Charging of Autonomous Mobile Robots (자율이동로봇의 무인 자동 충전을 위한 모노비전 방식의 충전단자 도킹 방법)

  • Keunho Park;Juhwan Choi;Seonhyeong Kim;Dongkil Kang;Haeseong Jo;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.95-103
    • /
    • 2024
  • The diversity of smart EV(electric vehicle)-related industries is increasing due to the growth of battery-based eco-friendly electric vehicle component material technology, and labor-intensive industries such as logistics, manufacturing, food, agriculture, and service have invested in and studied automation for a long time. Accordingly, various types of robots such as autonomous mobile robots and collaborative robots are being utilized for each process to improve industrial engineering such as optimization, productivity management, and work management. The technology that should accompany this unmanned automobile industry is unmanned automatic charging technology, and if autonomous mobile robots are manually charged, the utility of autonomous mobile robots will not be maximized. In this paper, we conducted a study on the technology of unmanned charging of autonomous mobile robots using charging terminal docking and undocking technology using an unmanned charging system composed of hardware such as a monocular camera, multi-joint robot, gripper, and server. In an experiment to evaluate the performance of the system, the average charging terminal recognition rate was 98%, and the average charging terminal recognition speed was 0.0099 seconds. In addition, an experiment was conducted to evaluate the docking and undocking success rate of the charging terminal, and the experimental results showed an average success rate of 99%.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.