• Title/Summary/Keyword: hardmetal

Search Result 31, Processing Time 0.015 seconds

Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis (알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구)

  • Kang, Hee-Nam;Jeong, Dong Il;Kim, Young Il;Kim, In Yeong;Park, Sang Cheol;Nam, Cheol Woo;Seo, Seok-Jun;Lee, Jin Yeong;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2022
  • Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.