• 제목/요약/키워드: hardened width

검색결과 44건 처리시간 0.025초

물림조건에 따른 경화강의 절삭저항 특성에 관한 연구 (A Study on the Cutting Resistance Characteristics of Hardended Steel according to Engagement Condition)

    • 한국생산제조학회지
    • /
    • 제5권3호
    • /
    • pp.58-65
    • /
    • 1996
  • This thesis is concerned with the study on the characteristics of the cutting resistance occurring in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool with nose radius. For the purpose, the shape of cutting cross-section made at nose part of the tool was analyzed geometrically and the wear mechanism on the flank face of the ceramic tool is investigated. In order to investigate the characteristics of cutting resistance two categories of cutting conditions are suggested, along with geometrical analysis. One category includes the conventional cutting parameters such as feed and depth of cut, another containing new cutting parameters of thickness of cut and width of cut etc. Thickness of cut width of cut and area of undeformed chip section formed by the condition of engagement between workpiece and cutting tool are determined as the function of feed, depth of cut and nose radius of cutting too, And an effective approach angle is determined by depth of cut and nose radius.

  • PDF

고출력 레이저에 의한 표면 경화 (Transformation Hardening of High Power Laser)

  • 김재도
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.24-31
    • /
    • 1995
  • Heat flow equation and FEM have been used to calculate the hardening section of material in laser transformation hardening. SCM440 used as the diesel engine piston of vessel has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. The specimens were inclined from 0 to 70 degree to investigate the characteristics of laser hardening. The geometrical factor of heat flow equation affects the size of hardening area. The case width decreased with increasing travel speed and the case width increased with increasing inclined angle. Maximum case depth was achieved about 1.0mm and maximum hardness of laser hardened area was of 2.8 times than that of base metal. Experimental data show good agreement with the theoretical calculations for given laser hardening conditions.

  • PDF

SM 45C강의 레이저 표면경화처리에 관한 연구 (A study on the laser surface hardening of SM 45C steel)

  • 나석주;김성도;이건이;김태균
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.53-62
    • /
    • 1987
  • 본 논문에서는 1 KW CW CO$_{2}$레이저 발생자장치를 사용하여 표면경화 처리 를 행할때 공정과 관련된 변수들이 용접부 및 표면경화층에 미치는 영향들을 이론과 실험을 통해서 규명하고, 이 결과들을 실제공정에 사용할 수 있는 기초자료로서 제시 하고자 한다. 이를 위해서 해석에 사용될 수 있는 유한요소법(Finite Element Meth- od)에 근거한 2차원 열유동 해석용 프로그램 및 데이타 처리 프로그램을 개발하고, 중 탄소강에 레이저 표면처리를 수행하여 실험 및 이론해석의 결과를 비교 검토하였다. 비교 검토하여 그 설정기준을 고찰하였다.

디젤엔진 피스톤용 SCM440의 레이저 표면경화부의 잔류응력 (Residual Stress Distribution of Laser Hardened SCM440 for Diesel Engine Piston)

  • 이동석;유웅재;김재도
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.182-186
    • /
    • 1995
  • SCM440, which is widely used as the diesel engine piston of vessel, has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. Laser hardening experiment has been carried out for the condition of a laser power 1kW, the travel speed between 0.4 and 1.5m/min, and a rectangular-Gaussian beam. Residual stress has been measured by using middle point technique of half value width of X-ray diffraction method. It was found that the compressive residual stress with the range between 400 and 600MHz has distributed in the laser hardening zones and the tensile residual stress between 100 and 200MHz has distributed in the boundary of hardening zones.

  • PDF

고경도 금형강의 고속절삭 가공시 CBN공구의 인선형태 변화에 따른 공구수명 평가에 관한 연구

  • 문상돈;오성훈;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.927-931
    • /
    • 1997
  • In process of the finish face milling of the hardended STD11 steel(H /sab r/ c50,55) by CBN tool, the optimum tool shape is suggested,which can minimize the tool fracture and by chipping by impact. The obtained results are as follows. (1) The optimal chamfer angel was about 25 .deg. , and the suitable chamfer width was 0.2mm. (2) The nose radius of tool was most excellent at 1.2mm in the viewpoint of tool wear and surface roughness. (3) Wear speed was effected by sintering method of CBN tool B.U.E

  • PDF

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • 제13권6호
    • /
    • pp.709-737
    • /
    • 2014
  • Fibre-reinforced self-compacting concrete (FRSCC) is a high-performance building material that combines positive aspects of fresh properties of self-compacting concrete (SCC) with improved characteristics of hardened concrete as a result of fibre addition. To produce SCC, either the constituent materials or the corresponding mix proportions may notably differ from the conventional concrete (CC). These modifications besides enhance the concrete fresh properties affect the hardened properties of the concrete. Therefore, it is vital to investigate whether all the assumed hypotheses about CC are also valid for SCC structures. In the present paper, the experimental results of short-term flexural load tests on eight reinforced SCC and FRSCC specimens slabs are presented. For this purpose, four SCC mixes - two plain SCC, two steel, two polypropylene, and two hybrid FRSCC slab specimens - are considered in the test program. The tests are conducted to study the development of SCC and FRSCC flexural cracking under increasing short-term loads from first cracking through to flexural failure. The achieved experimental results give the SCC and FRSCC slabs bond shear stresses for short-term crack width calculation. Therefore, the adopted bond shear stress for each mix slab is presented in this study. Crack width, crack patterns, deflections at mid-span, steel strains and concrete surface strains at the steel levels were recorded at each load increment in the post-cracking range.

베릴륨 용가재를 사용한 핵연료피복재 지르칼로이-4 브레이징에 대한 연구 (A Study on the Zircaloy-4 Brazing with Beryllium Filler Metal for the Nuclear Fuel)

  • 고진현;김형수
    • Journal of Welding and Joining
    • /
    • 제11권4호
    • /
    • pp.70-78
    • /
    • 1993
  • An attempt was made to investigate the effect of brazing time on microstructure, microhardness, and corrosion of Zircaloy -4as well as the beryllium diffusion into its sheet. The sheets were coated with beryllium and brazed at $1020^{\circ}C$ for 20-40 minutes in $2{\times}10^{-5}$ torr vacuum atmosphere. 1. Microstructurally the brazed zone was largely divided into three regions: a region of continuous or partially formed of eutectic liquid films along grain boundaries; a region of precipitation in both grains and grain boundaries; a region of elongated wide structure of .alpha.-laths, which was not affected by beryllium. 2. Due to the precipitates, the beryllium-migrated region was hardened and the width of the hardened region increased with increasing brazing time. 3. Beryllium brazed Zircaloy -4 sheets showed a higher corrosion rate than those of as-received and heat-treated at a brazing temperature. 4. Diffusion coefficient of beryllium into Zircaloy -4 at $1020^{\circ}C$ for 30 minutes was $7.67{\times}10^{-7}cm^2/sec.$ It seemed that Be penetrated Zircaloy -4 by forming eutectic liquid films along grain boundaries in the proximity of Be/Zr interface and it, thereafter, diffused into Zircaloy mainly by interstitial solid solution.

  • PDF

Yb:YAG 디스크로 레이저 표면 용융 경화된 SKD61 열간금형강의 경도와 미세조직에 미치는 레이저 출력의 영향 (Effects of laser power on hardness and microstructure of the surface melting hardened SKD61 hot die steel using Yb:YAG disk laser)

  • 이광현;최성원;강정윤
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.54-61
    • /
    • 2015
  • In this study, effect of laser power on hardness and microstructure of SKD61 Hot Die steel of which surface was melted and hardened with Yb:YAG disk laser was investigated. Beam speed was fixed at 70 mm/sec and distance between them was 0.8 mm about Laser surface melting. The only thing that was changed laser power. Laser powers were 2.0, 2.4 and 2.8 kW. No defect was found under all conditions. As the laser power increased, the penetration depth were deepened and the bead width was also widened. There was no hardness deviation of fusion zone at same laser power and it was higher than that of heat affected zone. In addition, the more laser power increased, the more hardness in fusion zone decreased. Fusion zone was macroscopically dendrite structure. However, core matric in dendrite was lath martensite of 100 nm size. There were $M_{23}C_6$ of 500 nm and the VC and $Mo_2C$ of a nano meters on boundary of dendrite.

고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화 (Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser)

  • 김종도;길병래;강운주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.