• Title/Summary/Keyword: hard phase

Search Result 437, Processing Time 0.026 seconds

A Study on the Synthesis and Physical Properties of Polyurethane Elastomer (Polyurethane 탄성체(彈性體)의 합성(合成)과 물성(物性)에 관(關)한 연구(硏究))

  • Yoon, Jeong-Sik;Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 1990
  • The purpose of this study is to estabilish the synthetic condition of polyurhethane elastomer for excellent properties. Polyurethane elastomer which have different NCO percentage and hard segment contents was synthesized by casting method. And the effects of hard segment contents were investigated by analytical methods such as IR, DSC, etc. [NCO]/[OH] ratio was proper at the range $1.02{\sim}1.05$. By IR absorption peak($1250cm^{-1}$) which indicate interurethane hydrogen bond it was confirmed that hard segment were crystallized. Melting point that was determined by DSC showed the effects of hard segment contents, phase mixing and crystalline size.

  • PDF

Finite Element Analysis of Carbon Steel according to Shape and Distribution of Phase (탄소강 조직의 형상 및 분포에 따른 유한요소해석)

  • Seo, Dae-Cheol;Lee, Duck-Hee;Lee, Jung-Ju;Nam, Soo-Woo;Choo, Wung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.780-790
    • /
    • 1997
  • In this study, the stress-strain relations of steels have been calculated as a function of microstructural morphologies of each phase by use of FEM program(i.e. ABAQUS). The mechanical behavior of low carbon steels is affected by the microstructural factors such as yield ratio, volume fraction, shape and distribution of each phase and so on. The effects of shape, volume fraction and yield ratio of each phase on the mechanical behavior were analyzed by using unit cell and whole specimen size models. Results obtained are summarized as follows. As the yield ratio of hard phase to that of soft phase and volume fraction of hard phase were increased, stress level of flow curves were increased. It was found that in whole specimen size model, as the particle size was decreased, higher stress level was shown. Lastly the relationship between microstructure and tensile properties was examined by using the steels with various microstructural morphologies.

Effect of Latex Particle Morphology on the Film Properties of Acrylic Coatings (II);Film Forming Behavior of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (II);모델 복합 라텍스 입자의 필름형성 거동)

  • Ju, In-Ho;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2004
  • Film forming behavior of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. The film forming behavior was evaluated using pseudo on-line measurements of the cumulative weight loss, the UV transmittance, and the tensile fracture energy. Each stages of film formation I, II were not sensitive to the morphology of model latexes, but stage-ill was largely dependent on the morphology of model latexes. The chain mobility of polymer which composed the shell component was found to dominantly determine the behavior of film forming stage-III.

Microstructure and Flexural Strength of Hardmetals

  • Hayashi, Koji
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.119-198
    • /
    • 1994
  • The characteristics of various important microstructural factors of WC-base hard- metals (cemented carbides) such as the amount of Co metal binder phase, the carbide grain size, the microstructural defects acting as a fracture source, the solid solubility of tungsten in the binder phase affected by the carbon content, the precipitation of $Co_3W$, the domain size of binder phase, the formation of ${\beta}-free$ layer or Co-rich layer and CVD or PVD coated layer, and the effects of these factors on the flexural strength of the hardmetals are reviewed.

  • PDF

A performance analysis of the discrete time DS/CDMA system based on the code phase difference (코드 위상차에 따른 이산 시간 CDMA 시스템의 성능 분석)

  • 안병양
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.11-16
    • /
    • 1998
  • DS/CDMA systems for the high speed communication require high code rats. In discrete time CDMA receivers, the performance degradation, caused by the phase difference between transmission code and reference code, increase the sampling frquency of the receiver. This increment of the sampling frequency makes hard to implement high speed CDMA systems. This paper analyzes the SIR(signal to interference Ratio) performance of the discrete time DS/CDMA system, based on the code phase difference. The results of this paper may be useful to study a low-sampling CDMA receiver.

  • PDF

Synchrotron SAXS Study on the Micro-Phase Separation Kinetics of Segmented Block Copolymer

  • Lee, Han-Sup;Yoo, So-Ra;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.98-107
    • /
    • 2001
  • The phase transition behavior isothermal micro-phase separation kinetics of polyester-based thermoplastic elastomer were studied using the synchrotron X-ray scattering(SAXS) method. The structural changes occurring during heating period were investigated by determining the changes of the one-dimensional correlation function, interfacial thickness and Porod constant. Based on the abrupt increases of the domain spacing and interfacial thickness, a major structural change occurring well below the melting transition temperature is suggested. Those changes are explained in terms of melting of the thermodynamically unstable hard domains or/and the interdiffusion of the hard and soft segments in the interfacial regions. SAXS profile changes during the micro-phase separation process were also clearly observed at various temperatures and the separation rate was found to be sensitively affected by the temperature. The peak position of maximum scattering intensity stayed constant during the entire course of the phase separation process. The scattering data during the isothermal phase separation process was interpreted with the Cahn-Hilliard diffusion equation. The experimental data obtained during the early stage of the phase separation seems to satisfy the Cahn-Hilliard spinodal mechanism. The transition temperature obtained from the extrapolation of the diffusion coefficient to zero value turned out to be about 147$\pm$$2^{\circ}$, which is close to the order-disorder transition temperature obtained from the Porod analysis. The transition temperature was also estimated from the inveriant growth rate. By extrapolating the inveriant growth rate to zero, a transition temperature of about 145$\pm$$\pm$$2^{\circ}$ was obtained.

  • PDF

Segmented Polyurethanes with BHPP, 2, 2-bis[4-(2-hydroxy-ethoxy)phenyl] propane, as a Chain Extender.

  • Lee, Dong-Won;Lim, Sang-Kyoo;Jang, Doo-Sang;Koo, Kang;Son, Tae-Won
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.5-8
    • /
    • 1998
  • Polyurethane elastomers are segmented cocoplymer with an [HS]n-type structure. Typically, these materials are two-phase systems, prepared from relatively polar and stiff component called the hard segment(H) and relatively flexible component known as the soft segment(S). Diisocyanate and chain extender together form the hard segment, which is dispersed within a matrix of the soft segment, composed of the macrodiolos.(omitted)

  • PDF

Folw Between Corotating Shrouded Dicks -Experiment Simultion of Computer Hard Disk Storage System- (회전하는 원판사이에서의 유체유동)

  • 최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.281-289
    • /
    • 1992
  • In an attempt to simulate the flows in the computer hard disk storage system, flow visualization and quantification by image processing technique were applied. Model geometry was constructed while the dynamic similitude was maintained. Circumferential velocities were mapped out in the transient spin-up phase. During the spin-up phase, fluid close to the rotating inner hub approached the solid body rotation, while the fluid in the outer region showed the velocity deficit compared to the rotating speed of the disks. Effects of presence of read/write head arm assembly between the gap were studied by changing the location of the head. The experimental results could serve as a benchmark for the alidation of numerical codes.

Elaboration of (Steel/Cemented Carbide) Multimaterial by Powder Metallurgy

  • Pascal, Celine;Chaix, Jean-Marc;Dutt, Ankur;Lay, Sabine;Allibert, Colette H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.291-292
    • /
    • 2006
  • A steel/cemented carbide couple is selected to generate a tough/hard two layers material. Sintering temperature and composition are deduced from phase equilibria, and experimental studies are used to determine optimal conditions. Liquid migration from the hard layer to the tough one is observed. Microstructure evolution during sintering of the tough material (TEM, SEM, image analysis) evidences coupled mechanisms of pore reduction and WC dissolution. Liquid migration, as well as interface crack formation due to differential densification are limited by suitable temperature and time conditions.

  • PDF