• Title/Summary/Keyword: handsheet properties

Search Result 77, Processing Time 0.019 seconds

Effects of Electron Beam Treatment on the Characteristics of Pulping and Papermaking of Hemp Bast Fibers (전자빔 처리가 대마 인피섬유의 펄프화 및 초지 특성에 미치는 영향)

  • Bae, Paek-Hyun;Seo, Jae-Hwan;Jung, Jin-Ho;Lee, Jae-Jung;Paik, Ki-Hyun;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.51-61
    • /
    • 2012
  • The new alkali pulping process combined with electron beam treatment was applied to utilize hemp bast tissues as a new valuable fibrous resource. Hemp bast tissues have some chemical properties with high lignin contents and holocellulose not to be defiberized by alkali pulping only, compared with the bast tissue of paper mulberry. To make up for the weakness of traditional alkali pulping process, electron beams were directly irradiated into the swelled bast tissue of hemp in NaOH solution and distilled water, and then facilitated the defiberization of hemp bast tissues. The papermaking from hemp bast fibers manufactured by the combination pulping process showed good apparent density, formation structure and air permeability, and had some mechanical properties with lower tensile, tear, burst strength and folding endurance. It is finally concluded that the combination pulping process with electron beam treatment could be suggested a new alternative for non-woody fibers.

Bleachability of Hemp Bast Fiber by Chlorine Dioxide (이산화염소 표백조건에 따른 삼 인피섬유의 표백효과)

  • Kim, Jun-Kyu;Choi, Kyoung-Hwa;Seo, Jin-Ho;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.109-114
    • /
    • 2015
  • In this study, the effects of chlorine dioxide (D) bleaching conditions on the delignification of hemp bast fiber were elucidated. Chlorine dioxide bleaching was carried out through three stages (DED) and five stages (DEDED), respectively. Applied amounts of chlorine dioxide at $D_1$ and $D_2$ stages were varied to find the optimum bleaching condition. It was found that the optical properties of its handsheet as well as the delignification of hemp bast fiber increased as the concentration of chlorine dioxide at $D_1$ stage increased. It was also notable that the bleachability of the DEDED bleaching stages was slightly more effective than that of the DED bleaching stages. The burst index of the handsheets made with bleached hemp bast fiber was higher than that of the unbleached samples, but the burst index of these samples decreased as their delignification increased. These results indicated that the higher concentration of chlorine dioxide at $D_1$ stage was major factor to improve the bleaching efficiency of hemp bast fiber.

Effect of Ground Calcium Carbonate Modified by Washless Multilayering of Polyelectrolytes on Paper Quality (무세척 고분자전해질 다층흡착 처리된 중질탄산칼슘이 종이의 품질에 미치는 영향)

  • Lee, Jegon;Im, Wanhee;Sim, Kyujeong;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.115-126
    • /
    • 2015
  • In this study, we investigated influence of ground calcium carbonate (GCC) modified by washless multilayering of polyelectrolytes on paper quality. Three layers of polyelectrolytes (cationic starch/anionic polyacrylamide/cationic starch) were formed on the surface of GCC using laboratory inline washless polyelectrolytes multilayering system, which was called inline LbL GCC. Base papers were prepared with untreated GCC or inline LbL GCC using a laboratory handsheet former. These handsheets were coated with rod coater, and then printed by black ink. Properties of base paper and fold crack of coated paper were evaluated. Base paper with inline LbL GCC showed much higher mechanical strength in terms of tensile index, strain, internal bond strength, and folding endurance. The fold crack of coated paper with inline LbL GCC occurred more frequently compared to coated paper with untreated GCC. This might be due to highly improved internal bond strength of base paper, which resulted in smaller delamination that played a role of stress dissipation. It would be recommended to design a proper coating layer in order to prevent fold crack.

The applicable evaluation of biodegradable polymer coated-mulching paper for afforestation seedlings (생분해성 고분자 코팅 조림묘목용 mulching mat 원지의 적용성 평가)

  • Lee, Geum-Ja;Yoo, Yeong-Jeong;Ko, Seung-Tae;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Recently, as the function of largest supplier of biomass for "low carbon green growth", the necessity for systematic management of afforestation areas is emphasizing. The forestation of seedling, besides the afforestation cost itself, is required some additional follow-up management costs, like mowing and fertilizing of forestation area, and removal of bindweed. The mulching mat for afforestation seedlings is available for rooting of little seedlings as well as initial forestation expenses. Mulching technique is also used to control soil temperature and moisture by covering the surface of ground. In this study, the paper based-mulching film coated with biodegradable polymer and functional additive was specially produced using laboratory bar coater, and analyzed for its degradable behavior. Coating colors were prepared by dissolving PE (polyester) 80 % and PLA(polylactic acid) 20 % in chloroform and finally applied to handsheet prepared by preceding study conditions. Base paper and polymer-coated paper were artificially aged by 2 kinds of degradation methods, which are soil degradation by microorganism and light degradation by 257 nm UV wavelengths. Strength property, oxidation index and morphological property were evaluated by reduction rates of tensile strength, FTIR spectra ratio of carboxyl and carbonyl group and SEM micrograph. As these results, polymer coated-paper was superior to base paper in degradation behaviors, having results with lower reduction rate of strength properties.

Changes of Recycled Paper Properties and Waste Paper Deinkability by the Repeated Recycling of Photocopy Paper (복사용지의 리사이클링 반복처리에 따른 재생지의 특성 및 고지의 탈묵성 변화)

  • Shin, Jun-Seop
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.4 no.2
    • /
    • pp.24-32
    • /
    • 1998
  • This study examined the effects of recycling on chemical pulp fibers from multiple recycles. Firstly, water-pretreated alkaline photocopy paper was disintegrated by TAPPI standard disintegrator at room temperature. After dewatering, this pulp was dried in oven at $80^{\circ}C$ for 24hrs. A sequence of wetting, disintegrating and drying was one recycling cycle and this cyclic treatment was repeated from zero to five times. The recycled handsheet dropped to 90% of the original brightness after five cycles, and lost the most brightness in the first two cycles. However, it had a gain of 10% in opacity after five cycles. And, in this study, the method for determining residual ink(toner) content in recycled handsheets were estabilished by means of SEM-EDX and atomic absorptive photometer. The change of residual ink percentage on recycled paper showed the effect of recycling numbers on deinkability of waste paper. A slight decrease in deinkability was noted for the recycled handsheets, which may be due to the change of fiber surface free energy connected with fiber swelling.

  • PDF

Effect of Inorganic fillers in Newsprint Papermaking (신문용지 제조에 있어서 무기 충전제들의 영향)

  • Chai, Kyu-Yoon;Lee, Joon-Koo;Kim, Sung-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.961-967
    • /
    • 1998
  • In order to improve the optical properties and printability of paper, various fillers are used in papermaking. This study was performed to investigate several fillers-precipitated calcium carbonate(PCC), ground calcium carbonate(GCC), and blends(PCC/talc or micro-talc(MVP) and GCC/talc or micro-talc(MVP)-for their effects on various newsprint properties. Results obtained from the study were summarized as follows ; 1) PCC treatment gave about 16.8% higher retention than GCC treatment at the filler level of 5% and the retention of filler in the handsheet increased as average particle size of mixed filler was increasing($PCC{\leq}GCC<MVP<talc$). 2) PCC treatment kept opacity more highly than no filler treatment and opacity decreased as average particle size of mixed filler was increasing. 3) Independent treatment of PCC kept tear strength more effectively than GeC did, and tear strength increased as average particle size of mixed filler was increasing. 4) Independent treatment of pee kept tensile strength more highly than other treatments and Gee treatment kept tensile strength highly than pee treatment under mixed filler treatment. 5) Burst strength under PCC treatments decreased linearly as average particle size of mixed filler was increasing. 6) Compared "With non-filler treatment, filler treatment gave much better printability.

  • PDF

Impregnation Effects of Water Soluble Organic and Inorganic Chemicals into Micropore of Cell Wall of Waste Paper fiber(I) (페지섬유의 세포벽 Micropore 속으로 수용성 유기 및 무기화합물 충전효과(제1보))

  • 이병근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 1997
  • The fiber wall filling(FWF) technology, which is based on Precipitatin of fillers in the micropores of the cell wall structure of never-dried chemical pulp fiber, has been developed to improve filling and loading process in papermaking. In presenting FWF technique here, micropores of pulp fiber are first impregnated with an ionic solution of water soluble salt and consecutively impregnated with the second salt solution. This procedure generates an insoluble precipitate within the micropores of cell wall by chemical interaction of these two ionic salt solutions This is the first attempts to use FWF technology for the quality of waste paper grade which is recycled in papermaking, even though this FWF technology has been impressively improved for never-dried chemical pulp in filling and loading process of papermaking. The precipitated amount of CaCO$_3$ and SrCO$_3$ reached 5-6% and 4-5% of the waste paper weight respectively, which was measured by ash content of the burned waste paper fiber. On the other way the precipitated amounts of those materials impregnated into never-dried chemical pulp fiber have reached 17-18% and 16-18% respectively. The micropore loading technique gives optical and physical properties to the handsheets formed with celt-wall-filled fibers which are better than those handsheet properties resulting from conventional loading. The papers made from the cell-wall-filled pulps are stronger than those with the customary location of filler between the fibers.

  • PDF