• Title/Summary/Keyword: hand thickness

Search Result 683, Processing Time 0.024 seconds

Ultrasonographic Assessment of the Cutaneous Changes Induced by Topical Use of Novel Peptides Comprising Laminin 5

  • Park, Kyong Chan;Kim, Se Young;Khan, Galina;Park, Eun Soo
    • Archives of Plastic Surgery
    • /
    • v.49 no.3
    • /
    • pp.304-309
    • /
    • 2022
  • Background Laminin 5, which is found in the basement membrane of dermal-epidermal junction (DEJ), is a major adhesive component and associated with proliferating and migrating keratinocytes. In this study, we hypothesized that the topical application of the skin care products containing the novel peptides might restore the DEJ structure by deriving deposition of laminin 5 and promoting the keratinocyte migration. Here, we evaluated the restoration of DEJ by measuring the skin thickness. Methods Single-center retrospective analysis was performed on a total of 13 patients who underwent skin care using Baume L.C.E. (France, Laboratories d' Anjou) between January and March 2021. All patients applied the skin care agent for 2 weeks only on their left hand dorsum. Before the initiation of the application and after 2 weeks, both their hands were evaluated on photography and ultrasound. And the patients were asked to rate their satisfaction with the questionnaire after 2 weeks. Results There was no obvious improvement in photographic assessment and questionnaire. The post-pre difference of skin thickness in ultrasound images was, in left hand, 0.1 ± 0.37 in distal point and 0.1 ± 0.35 in proximal point; and, in right hand, 0 ± 0.17 in distal point and 0 ± 0.15 in proximal point, respectively. The pre-post difference was statistically significant in proximal point (p = 0.035). Conclusion Topical application of novel peptide derivative comprising laminin 5 demonstrated cutaneous changes including skin thickness, as assessed by ultrasound. Further studies using other modalities including dermal density measurement, three-dimensional photography, optical coherence tomography, or skin biopsy would be helpful to determine the skin-improving effects.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Experimental and numerical investigation on the thickness effect of concrete specimens in a new tensile testing apparatus

  • Lei Zhou;Hadi Haeri;Vahab Sarfarazi;Mohammad Fatehi Marji;A.A. Naderi;Mohammadreza Hassannezhad Vayani
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.71-84
    • /
    • 2023
  • In this paper, the effects of the thickness of cubic samples on the tensile strength of concrete blocks were studied using experimental tests in the laboratory and numerical simulation by the particle flow code in three dimensions (PFC3D). Firstly, the physical concrete blocks with dimensions of 150 mm×190 mm (width×height) were prepared. Then, three specimens for each of seven different samples with various thicknesses were built in the laboratory. Simultaneously with the experimental tests, their numerical simulations were performed with PFC3D models. The widths, heights, and thicknesses of the numerical models were the same as those of the experimental samples. These samples were tested with a new tensile testing apparatus. The loading rate was kept at 1 kg/sec during the testing operation. Based on these analyses, it is concluded that when the thickness was less than 5 cm, the tensile strength decreased by increasing the sample thickness. On the other hand, the tensile strength was nearly constant when the sample thickness was raised to more than 5 cm (which can be regarded as a threshold limit for the specimens' thickness). The numerical outputs were similar to the experimental results, demonstrating the validity of the present analyses.

Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II (근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계)

  • Yun, Minro;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Examination of the Optimal Insulation Thickness of Exterior Walls for Climate Change (기후변화를 고려한 외벽 최적단열두께 검토)

  • Jung, Jae-Hoon
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.81-86
    • /
    • 2011
  • By strengthening the insulation performance of a building, a great deal of energy can be saved and a comfortable indoor environment can be offered to people. On the other hand, the climate, which has a great influence on the indoor environment, is changed by global warming. Therefore, in planning building envelope structure and design, climate change should be considered. In this paper, the optimal insulation thickness of exterior walls was calculated by an economic assessment method using heating degree-days. Additionally, how much influence climate change has on planning building insulation was investigated. The examination showed that heating degree-days have decreased by about 10% due to climate change in the past few decades. It was also shown that the optimal insulation thickness of exterior walls was thin, at about 6%, in three representative Korean cities (Seoul, Daejeon, Jeju).

Efforts of Specimen Sizes on Crack Opening Displacement (COD) for Submerged Arc Weldments of Fine Grained Steel (미세립강 잠호 용접부의 COD에 미치는 시편 크기의 영향)

  • 윤중근;김대훈;김문일
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.53-60
    • /
    • 1983
  • COD test based on fracture mechanics concept was used in this study to evaluate the fracture toughness quantitatively. Effects of specimen sizes on critical COD value for ABS EH 36 steel and its submerged arc weldments, and the variation of critical COD value depending on metallurgical/mechanical heterogeneities caused by weld thermal cycles were investigated. Experiment was performed by using specimens made from base metal and submerged arc weldments according to BS 5762. Obtained results are summarized as follows; 1) Critical COD value for base metal decreases with increasing thickness of specimen. On hand, as the reduction ratio of critical COD decreases with increasing specimen thickness, critical COD value becomes constant above a thickness of specimen. 2) Critical COD value for weldment decreases with increasing thickness of specimen and was also affected by metallurgical states of base metal. 3) Size effects for weldment was greater at the hardened region. 4) Critical COD value was affected by microstructural change due to weld thermal cycles in weldments; that is, accicular ferrite formation is favorable for increasing of COD value.

  • PDF

Effect of Cellulase Treatment on Mechanical Properties and Hand of Tencel Fabrics (효소처리에 의한 텐셀직물의 역학적 성질 및 태의 변화)

  • 손경희;신윤숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1141-1149
    • /
    • 1998
  • Tencel fabrics were treated with NaOH, mechanically prefibrillated, and hydrolyzed by cellulase. Softner was applied to improve hand of the treated Tencel fabrics after prefibrillation and cellulase treatment. Kawabata's Evaluation System for Fabrics(KES-FB) was used to evaluate effects of NaOH pretreatment, prebifrillation, and cellulase and softner treatments on fabric hand of the treated fabrics. Primary hand values of women's medium thick fabrics such as KOSHI, NUMERI, FUKURAMI, and SOFUTOSA, and total hand values were evaluation parameters. As the treatments of prefibrillation, cellulase, and softner progressed, values in bending and shearing properties decreased and softness and elasticity were imparted to the treated fabrics. Specifically, compressional linearity, compressional energy, and thickness of the treated fabrics increased by prefibrillation, providing bulkiness to the treated fabrics. Values indicating surface properties increased owing to fibrils formed by prefibrillation treatment, but removal of fibrils by cellulase treatment enhanced smoothness. As the fabrics were exposed to various treatments such as NaOH pretreatments, prefibrillation, and cellulase and softner treatments, NUMERI, FUKURAMI, SOFUTOSA, and total hand values increased with the exception of KOSHI, Consequently, the treated fabrics became softer, smoother, and more elastic. Especially, the NaOH pretreatment provided superior SOFUTOSA to Tencel fabrics.

  • PDF

The Effect of Alkali Treatment on the Hand of Polyester Fabrics (폴리에스테르 직물의 알칼리 감량가공에 따른 촉감의 변화)

  • 신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.783-791
    • /
    • 1996
  • The effect of alkali treatment on the changes in characteristics, mechanical properties, and hand of polyester fabrics was studied. Two kinds of fabrics having different yarn deniers were treated varying weight loss. The results were as follows; 1. Changes in constructional characteristics by alkali treatment were: a decrease in weight & thickness of fabric, a decrease in yarn denier, a decrease in apparent density of fabric, an increase in porosity to air, and a change fiber surface. 2. As for the changes in mechanical properties by alkali treatment, findings were : an increase in WT, RT, MIU, LC, and WC, a decrease in LT, B,2HB, G,2HG,2HGS, MMD, SMD, and RC, ana an increase in drape. 3. Changes in hand by alkali treatment were: a decrease in KOSHI and HARE, an increase in FUUURAMI, SHARI, KISHIMI, and SHENAYAUASA, and an increase in T.H.V 4. In the case of the same weight loss, the hand of 40/24 fabric being composed of thinner yarns was better than the hand of 50/24 fabric. 5. When 50/24 fabric was treated to have the same weight with 40/24 fabric, so the yam deniers of two fabrics were the same, the hand of 50/24 fabric having larger weight loss was better than the hand of 40/24 fabric.

  • PDF

Effects of the Inlet Boundary Layer Thickness and the Boundary Layer Fence on the Heat Transfer Chracteristics in a Turbine Cascade (입구경계층 두께와 경계층 펜스가 터빈 캐스케이드내 열전달 특서에 미치는 영향)

  • Jeong, J.S.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.765-770
    • /
    • 2001
  • The objective of the present study is to investigate the effects of the various inlet boundary layer thickness on convective heat transfer distribution in a turbine cascade endwall and blade suction surface. In addition, the proper height of the boundary layer fences for various inlet boundary layer thickness were applied to turbine cascade endwall in order to reduce the secondary flow, and to verify its influence on the heat transfer process within the turbine cascade. Convective heat transfer distributions on the experimental regions were measured by the image processing system. The results show that heat transfer coefficients on the blade suction surface were increased with an augmentation of inlet boundary layer thickness. However, in a turbine cascade endwall, magnitude of heat transfer coefficients did not change with variation of inlet boundary layer thickness. The results also present that the boundary layer fence is effective in reducing heat transfer on the suction surface. On the other hand, in the endwall region, boundary layer fence brought about the subsidiary heat transfer increment.

  • PDF

Facial soft tissue thickness among skeletal malocclusions: is there a difference?

  • Kamak, Hasan;Celikoglu, Mevlut
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Objective: The purpose of this study was to determine the soft tissue thickness of male and female orthodontic patients with different skeletal malocclusions. Methods: Soft tissue thickness measurements were made on lateral cephalometric radiographs of 180 healthy orthodontic patients with different skeletal malocclusions (Class I: 60 subjects, Class II: 60 subjects, Class III: 60 subjects). Ten measurements were analyzed. For statistical evaluation, one-way ANOVA and Kruskal-Wallis tests were performed. Least significant difference (LSD) and Dunnet T3 post hoc tests were used to determine the individual differences. Results: Soft tissue thicknesses were found to be greater for men than for women. Statistically significant differences among the skeletal groups were found in both men and women at the following sites: labrale superius, stomion, and labrale inferius. The thickness at the labrale superius and stomion points in each skeletal type was the greatest in Class III for both men and women. On the other hand, at the labrale inferius point, for both men and women, soft tissue depth was the least in Class III and the greatest in Class II. Conclusions: Soft tissue thickness differences among skeletal malocclusions were observed at the labrale superius, stomion, and labrale inferius sites for both men and women.