• Title/Summary/Keyword: hand strength

Search Result 1,509, Processing Time 0.031 seconds

A Secure Mobile Message Authentication Over VANET (VANET 상에서의 이동성을 고려한 안전한 메시지 인증기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1087-1096
    • /
    • 2011
  • Vehicular Ad Hoc Network(VANET) using wireless network is offering the communications between vehicle and vehicle(V2V) or vehicle and infrastructure(V2I). VANET is being actively researched from industry field and university because of the rapid developments of the industry and vehicular automation. Information, collected from VANET, of velocity, acceleration, condition of road and environments provides various services related with safe drive to the drivers, so security over network is the inevitable factor. For the secure message authentication, a number of authentication proposals have been proposed. Among of them, a scheme, proposed by Jung, applying database search algorithm, Bloom filter, to RAISE scheme, is efficient authentication algorithm in a dense space. However, k-anonymity used for obtaining the accurate vehicular identification in the paper has a weak point. Whenever requesting the righteous identification, all hash value of messages are calculated. For this reason, as the number of car increases, a amount of hash operation increases exponentially. Moreover the paper does not provide a complete key exchange algorithm while the hand-over operation. In this paper, we use a Received Signal Strength Indicator(RSSI) based velocity and distance estimation algorithm to localize the identification and provide the secure and efficient algorithm in which the problem of hand-over algorithm is corrected.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

SHEAR BOND STRENGTH OF COMPOSITE RESIN TO ENAMEL FOLLOWING ENAMEL MICROABRASION (Enamel Microabrasion을 시행한 법랑질과 복합레진의 전단결합강도)

  • Hong, Kee-Sang;Lee, Sang-Dae;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.45-53
    • /
    • 2000
  • Enamel microabrasion is a means by which superficial enamel discoloration is removed using hydrochloric acid and fine pumice. As enamel microabrasion alone may not be sufficient in cases of deeper discoloration, composite resin restoration is recommended in areas where there is remaining discoloration. The purpose of this study was to investigate the effects of different methods and number of applications of enamel microabrasion on the shear bond strength of composite resin to enamel. Untreated control was designated as group 1. 5-second applications of a mixture of 18% HCl and fine pumice were performed 5 and 10 times on groups 2 and 3, respectively. A commercially available mixture of 10% HCl and abrasives(PREMA) was applied using a 10 : 1 gear reduction handpiece 5 and 10 times on groups 4 and 5, respectively, with each application lasting 20 seconds. After etching with 37% phosphoric acid, composite resin was bonded. Thermocycling was performed and shear bond strength was measured. The following results were obtained : 1. Group 2 showed the highest bond strength$(24.36{\pm}3.34)$, while group 3 showed the lowest$(19.35{\pm}3.43)$, Shear bond strength decreased in the following order: 2>4>5>1>3. 2. Group 2 showed bond strength significantly higher compared to groups 1 and 3(p<0.05). 3. There were no significant differences between groups 2 and 3, which had been microabraded using HCl and pumice, and groups 4 and 5, to which PREMA had been applied, when bond strengths were compared(p>0.05). 4. When modes of fracture were examined, adhesive failure was observed in groups 3 and 4, while cohesive failure was observed in groups 1, 2, 3 and 4. Only mixed failures were found group 5. 5. When viewed using a SEM, groups 2 and 3, which had been microabraded using HCl and pumice, showed surface appearances similar to that of enamel etched with phosphoric acid. Groups 4 and 5, treated with PREMA, exhibited a smooth surface similar to that of group 1. All oops showed similar, typical surface characteristics following phosphoric acid etching.

  • PDF

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Effect of joint mobilization on improvement of knee pain, isokinetic strength, muscle tone, muscle stiffness in an elite volleyball player with knee injury (무릎손상 엘리트 배구선수에 관절가동운동이 무릎통증, 등속성 근력, 근긴장도, 근경직 개선에 미치는 효과)

  • Wang, Joong-San;An, Ho-Jung;Kim, Yong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.326-333
    • /
    • 2016
  • This case study identified the effects of joint mobilization on knee pain, isokinetic strength, muscle tone, and muscle stiffness in an elite volleyball player with a knee injury. The subject had experienced cartilage defects of the left knee joint and underwent surgery to correct the condition. The patient complained of continuous pain in the left knee joint in daily life in addition to pain during exercise. The study was conducted from August 5 to 12, 2015 and joint mobilization was applied to the left knee joint for 15 minutes once a day for 8 days. Knee pain was measured using a visual analogue scale, and the concentric peak torque of the quadriceps and hamstring muscles was measured using an isokinetic muscular strength measurement device. The muscle tone and stiffness of the rectus femoris muscle, vastus medialis, and vastus lateralis on the injured side were measured using a myotonometer. All the measurements were conducted before and after the intervention. Joint mobilization was effective in reducing knee pain on the injured side, increasing the concentric peak torque of the quadriceps and hamstring muscles on both sides, and increasing the muscle stiffness of the quadriceps muscle on the injured side. Concentric peak torque of the quadriceps muscle on the injured side increased a great deal as the number of joint mobilizations was increased, largely diminishing the difference in concentric peak torque between the normal side and injured side. On the other hand, joint mobilization was ineffective in improving the hamstring to quadriceps strength ratio on the injured side. While this study suggests that joint mobilization can be an effective intervention to improve the knee pain, isokinetic strength, and muscle stiffness of elite volleyball players, it should be performed alongside training for an appropriate strength ratio.

A Study on the Fatigue Strength of the Welded Joints in Steel Structures(II) (강구조물(鋼構造物)의 용접연결부(鎔接連結部)의 피로강도(疲勞强度)에 관한 연구(研究)(II))

  • Park, Je Seon;Chung, Yeong Wha;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1986
  • Welded connectors of the cover plates, the transverse stiffeners of the plate girders, and the gusset plates of the plates girders or box girders, were selected as studying objects. A simplified method of drawing the S-N curves in these welded joints by a computer program without the direct fatigue tests was established. The plots on the S-N curve using the values from the practical fatigue tests were compared with the results from the method of the computer programming. The results of these studies are as follows. It appeared that the fatigue life by calculation method was a little less than the practical fatigue life from the actual tests. The latter values included both life $N_c$ of occurrence of initial crack $a_i$ and the life $N_p$ of propagation of critical crack. On the other hand, the former values included only the life $N_p$. Therefore, these results should be considered as justifiable ones. Since the difference between the two results was not significant, the results by calculation method should be in the conservation side when the safety of the structures was considered. Consequently, the results by calculation method should be applicable to the fracture fatigue design of structure. For reference, the same fatigue tests were performed with the specimens of 3 pieces in each case made of the low-strength steel, SS 41. The results went unexpected showing that the fatigue strength was lower in the case of low-strength steel. That is, in the case of the cover plate, the fatigue strength became slowly higher than the case of high-strength steel, SWS 50. That was observed when the maximum testing stress was higher than $14kg/mm^2$. In addition, in the case of the transverse stiffener, the fatique strength became rapidly higher than the case of SWS 50. That was observed when the maximum testing stress was lower than $31kg/mm^2$. It was thought that more such fatigue tests should be performed for more reliable results.

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Ultraviolet Resonance Raman Spectroscopy of Bacteriorhodopsin and Its Photointermediates

  • Hashimoto, Shinji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.114-117
    • /
    • 2002
  • Ultraviolet resonance Raman (UVRR) spectroscopy was used to elucidate the dynamic change of the protein structure of bacteriorhodopsin (BR) during the photocycle. The photointermediates minus light- adapted (LA) BR difference spectra show Trp difference signals, which are assigned to Trp189 or Trp182 on helix F by using the mutants, W182F and W189F. The Difference signals of Trp 182 indicates an increase in hydrogen bonding strength at the indole nitrogen and a large change in the side chain conformation (X$\^$2,1/ torsion angle) in the M$_1$ \longrightarrow M$_2$ transition. On the other hand, Trp189 shows an increased hydrophobic interaction. These results suggest that the tilt of helix F occurs in the M$_1$\longrightarrow M$_2$ transition. In the M$_2$ \longrightarrow N transition, the hydrophobic interaction of Trp182 decreases drastically, The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.

  • PDF

Structural and Dielectric Studies of LLDPE/O-MMT Nanocomposites

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.235-240
    • /
    • 2014
  • Nanocomposites made of linear low density polyethylene (LLDPE) and organo-modified montmorillonite (O-MMT) were processed by melt compounding from a commercially available premixed LLDPE/nanoclay masterbatch, at different nanoclay loadings, by co-rotating twin-screw extruder. The morphological and dielectric properties of LLDPE/O-MMT nanocomposites were investigated to understand the structure-dielectric properties relationship in the nanocomposites. The microstructures of the materials were characterized by wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Initial findings by FTIR spectroscopy characterization indicated the absence of any chemical interaction between LLDPE and nanoclay during the extrusion process, while DSC showed that a 1% wt loading of nanoclay particles increased the degree of crystallinity of the nanocomposites samples. On the other hand, XRD, SEM, TEM and AFM indicated that nanoclay layers were intercalated or exfoliated in the LLDPE matrix. A correlation between the structure and dielectric properties of LLDPE/O-MMT nanocomposites was found and discussed.

High Temperature Fatigue Behavior of A356 and A319 Heat Resistant Aluminum Alloys (A356 및 A319 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.467-469
    • /
    • 2009
  • In this study, fatigue samples were prepared from cylinder head parts that are actually used in domestic (A) and foreign (B) automobiles; high-temperature, high-cycle, and low-cycle fatigue characteristics were then evaluated and compared. A study on the correlation between the microstructural factor and high temperature fatigue characteristic was attempted. The chemical compositions of the heat resistant aluminum alloys above represented A356 (A) and A319 (B), respectively. The result of the tensile strength test on material B at $250^{\circ}C$ was higher by 30.8MPa compared to material A. On the other hand, elongation was 8.5% higher for material A. At $130{\circ}C$, material B exhibited high fatigue life given high cycle fatigue under high stress, whereas material A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility is increased, material A demonstrated higher fatigue life. Through the observation of the differences in microstructure and the fatigue fracture surface, an attempt to explain the high-temperature fatigue deformation behavior of the materials was made.

  • PDF