• Title/Summary/Keyword: hampel filter

Search Result 4, Processing Time 0.017 seconds

Evaluation of applicability of Hampel Filter to outlier check for river water level data (하천수위 자료 이상치 점검에 대한 Hampel 필터의 적용성 평가)

  • Park, Heeseong;Kim, Hyoung Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.352-352
    • /
    • 2022
  • 수위자료는 기초 수문자료의 하나로서 자료 수집시 이에 대한 품질관리가 반드시 필요하다. 이 과정에서 이상치 여부를 점검하여 이상치로 확인된 경우 소거하거나 수정하는 등의 처리를 해야 한다. 수위자료의 이상치 점검에는 다양한 방법이 있지만 아직 일반화된 방법은 없다. 이에 다양한 방법에 대한 적용가능성을 평가해 볼 필요가 있다. Hampel 필터는 신호처리 시 신호의 이상치를 찾아 보완하려고 개발된 필터이다. 시계열자료에서 이상치를 감지하는 고전적인 접근 방법은 이동평균과 이동표준편차를 이용하는 것이지만 고전적인 이동평균과 이동표준편차는 이상치의 영향을 받는다. 이에 따라 이상치의 추정이 어렵게 되는 경우가 있다. 이에 반하여 Hampel 필터는 이동평균 및 이동표준편차 대신 중앙값과 중앙값 절대편차(Median Absolute Deviation; MAD)를 이용함으로써 더 나은 결과를 얻을 수 있다. Hampel 필터는 신호처리용으로 개발되었기 때문에 부드러운 Sine 곡선에 적합할 것으로 보이며, 이미 하천수위 변화보다는 부드러운 변화를 보이는 저수지수위의 이상치를 점검하기 위해 사용되고 있다. 하지만 변화가 급격하고 첨두가 발생하는 하천의 수위에 대해서도 적용할 수 있는지에 대해서는 평가가 필요하다. 이에 본 연구에서는 신호처리에 사용되는 Hampel 필터를 이용하여 수위자료의 이상치 점검에 적용하고 과거 자료에 기록된 실제 이상치 자료와 비교하여 그 성능을 평가해 보았다.

  • PDF

Analysis of the Optimal Window Size of Hampel Filter for Calibration of Real-time Water Level in Agricultural Reservoirs (농업용저수지의 실시간 수위 보정을 위한 Hampel Filter의 최적 Window Size 분석)

  • Joo, Dong-Hyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-Hoon;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.9-24
    • /
    • 2022
  • Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.

Analysis of Applicability by Filter Technique for Water Level Correction of Agricultural Canal (농업용 수로부의 수위 보정을 위한 필터기법별 적용성 분석)

  • Joo, Donghyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-hoon;Yun, Hyung Chang;Park, Sang-Bin;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.51-68
    • /
    • 2023
  • Due to the recent integrated water management policy, it is important to identify a reliable supply amount for establishing an agricultural water supply plan. In order to identify the amount of agricultural water supply, it is essential to calculate the discharge by measuring the water level and flow velocity of reservoirs and canal agricultural water, and quality control to ensure reliability must be preceded. Unlike agricultural reservoirs, canal agricultural water are more sensitive to the surrounding environment and reservoir irrigation methods (continuous, intermittent irrigation, etc.), making it difficult to estimate general water level patterns and at the same time a lot of erroneous data. The Korea Rural Community Corporation is applying a filter technique as a quality control method capable of processing large quantities and real-time processing of canal agricultural water level data, and applicability evaluation is needed. In this study, the types of errors generated by the automatic water level measurement system were first determined. In addition, by using the manual quality control data, a technique with high applicability is derived by comparing and analyzing data calibrated with Gaussian, Savitzky-Golay, Hampel, and Median filter techniques, RMSE, and NSE, and the optimal parameters of the technique range was derived. As a result, the applicability of the Median filter was evaluated the highest, and the optimal parameters were derived in the range of 120min to 240min. Through the results of this study, it is judged that it can be used for quantitative evaluation to establish an agricultural water supply plan.

Quality Control on Water-level Data in Agricultural Reservoirs Considering Filtering Methods (필터링 기법을 이용한 농업용저수지 수위자료의 품질관리 방안)

  • Kim, Kyung-hwan;Choi, Gyu-hoon;Jung, Hyoung-mo;Joo, Donghyuk;Na, Ra;Choi, Eun-hyuk;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.83-93
    • /
    • 2021
  • Agricultural reservoirs are important facilities for storing or managing water for the purpose of securing agricultural water, creating and expanding agricultural production bases, and using them to increase agricultural production. In particular, the Korea Rural Community Corporation (KRC) manages agricultural reservoirs scattered across the country, and officially recognizes and distributes hydrological data to increase their public utilization and aims to improve the value of water resources. Data on the water level of agricultural reservoirs are important. However, errors such as missing values and outliners limit utilization of the data in various fields of research and industry. Therefore, water quality data measures should be devised to increase reliability. this study categorized different error types and looked at automatic correction methods to enhance the reliability of the vast hydrological data. In addition, the water level data corrected from errors were compared to the reference hydrologic data through expert judgment in accordance with the quality control procedure, and the most appropriate measures were verified. As KRC manages more agricultural reservoirs than any other institution, the proposed method of efficient and automatic water level data correction in this study is expected to increase the availability and reliability of the hydrological data.